CS540 Introduction to Artificial Intelligence Lecture 17

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

July 27, 2020

Course Evaluation

Admin

- M11 is course evaluation on AEFIS: it will be opened on August 10 to August 21. Submissions of M11 before August 10 will receive 0.
- All M8 to M12 and P1 to P6 will be due on August 20 midnight.
- TA's Review Session on August 10. Final exams on August 17 (Version A) and August 18 (Version B), same format as the midterm.

5 -> 9 pick 3 hours

Coordination Game

Admin

 You are not allowed to discuss anything about this question in the public chat. There will be around 5 new questions on the final exam. I will post n of them before the exam (probably next Tuesday): • A: n = 0

• B: n = 1 if more than 50 percent of you choose B.

• C: n = 2 if more than 75 percent of you choose C.

• D: n = 3 if more than 98 percent of you choose D.

• E: n = 0.

Coordination Game Repeat

Admin

- You are not allowed to discuss anything about this question in the public chat. There will be around 5 new questions on the final exam. I will post n of them before the exam (probably next Tuesday):
- A: n = 0.
- B: n = 1 if more than 50 percent of you choose B.
- C: $n \neq 2$ if more than 75 percent of you choose C.
- D: n = 3 if more than 98 percent of you choose D.
- E: n = 0.

- Local search is about searching through a state space by iteratively improving the cost to find an optimal or near-optimal state.
- The successor states are called the neighbors (sometimes move set).
- The assumption is that similar (nearby) solutions have similar costs.

Hill Climbing (Valley Finding) Description

- Start at a random state.
- Move to the best neighbor state (one of the successors).
- Stop when all neighbors are worse than the current state.
- The idea is similar to gradient descent.

Boolean Satisfiability Example 1

Quiz

Assume all variables A, B, C, D, E are set to True. How many
of the following clauses are satisfied?

$$\begin{bmatrix}
\bullet(A \lor \neg B \lor C) \land & & & \\
\bullet(\neg A \lor C \lor D) \land & & & \\
\bullet(B \lor D \lor \neg E) \land & & & \\
\bullet(\neg A \lor \neg C \lor E) & & & \\
\bullet(\neg A \lor \neg C \lor E) & & & \\
\bullet(A \lor \neg B \lor C) \land & & & \\
\downarrow \bullet (\neg A \lor \neg C \lor E) & & & \\
\bullet(A \lor \neg B \lor C) \land & & & \\
\downarrow \bullet (\neg A \lor \neg C \lor E) & & & \\
\bullet(A \lor \neg B \lor C) \land & & & \\
\downarrow \bullet (\neg A \lor \neg C \lor E) & & & \\
\bullet(A \lor \neg B \lor C) \land & & & \\
\downarrow \bullet (\neg A \lor \neg C \lor E) & & & \\
\bullet(A \lor \neg B \lor C) \land & & & \\
\downarrow \bullet (\neg A \lor \neg C \lor E) & & & \\
\bullet(A \lor \neg B \lor C) \land & & & \\
\downarrow \bullet (\neg A \lor \neg C \lor E) & & & \\
\bullet(A \lor \neg C \lor D) \land & & & \\
\downarrow \bullet (\neg A \lor \neg C \lor E) & & & \\
\bullet(A \lor \neg C \lor E) & & & \\
\downarrow \bullet (\neg A \lor \neg C \lor E) & & & \\
\bullet(A \lor \neg C \lor E) & & & \\
\downarrow \bullet (\neg A \lor \neg C \lor E) & & & \\
\bullet(A \lor \neg C \lor E) & & & \\
\bullet(A \lor \neg C \lor C) & & \\
\bullet(A \lor \neg C \lor E) & & & \\
\bullet(A \lor \neg C \lor E) & & & \\
\bullet(A \lor \neg C \lor E) & & & \\
\bullet(A \lor \neg C \lor E) & & & \\
\bullet(A \lor \neg C \lor E) & & & \\
\bullet(A \lor \neg C \lor E) & & & \\
\bullet(A \lor \neg C \lor E) & & & \\
\bullet(A \lor \neg C \lor E) & & & \\
\bullet(A \lor \neg C \lor E) & & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) & & \\
\bullet(A \lor \neg C \lor E) &$$

hill climbing of flip c hove to T, T, F

Boolean Satisfiability Example 2

Compare cost unit multiple initial

 Assume all variables A, B, C, D, E are set to True. Which one of the variables should changed to False to maximize the number of clauses satisfied?

$$\bullet$$
 $\neg A \lor C \lor D$

$$\bullet$$
 $\neg C \lor \neg D \lor \neg E$

$$\bullet \neg A \lor \neg C \lor E$$

Boolean Satisfiability Example 3

Q4

Assume all variables A, B, C, D, E are set to True. Which one
of the variables should changed to False to maximize the
number of clauses satisfied?

Mithel

Hill Climbing Algorithm

- Input: state space S and cost function f.
- Output: $s^* \in S$ that minimizes f(s).
- Start at a random state s₀.
- At iteration t, find the neighbor that minimizes f.

$$s_{t+1} = \arg\min_{s \in s'(s_t)} f(s)$$

Stop when none of the neighbors have a lower cost.

stop if
$$f(s_{t+1}) \leq f(s_t)$$

 A simple modification is picking random initial states multiple times and finding the best among the local minima.

First Choice Hill Climbing

- If there are too many neighbors, randomly generate neighbors until a better neighbor is found!
- This method is called first choice hill climbing.

Simulated Annealing

Description

- Each time, a random neighbor is generated.
- If the neighbor has a lower cost, move to the neighbor.
- If the neighbor has a higher cost, move to the neighbor with a small probability.
- Stop until bored.
- It is a version of Metropolis-Hastings Algorithm.

Acceptance Probability

Definition

- The probability of moving to a state with a higher cost should be small.
- Constant: p = 0.1
- ② Decreases with time: $p = \frac{1}{t}$
- Oecreases with time and as the energy difference increases:

$$p = \exp\left(-\frac{|f(s') - f(s)|}{\mathsf{Temp}(t)}\right)$$

 The algorithm corresponding to the third idea is called simulated annealing. Temp should be a decreasing in time (iteration number).

Temperature

Definition

 Temp represents temperature which decreases over time. For example, the temperature can change arithmetically or geometrically.

Temp
$$(t+1) = \max\{ \text{ Temp } (t) - 1, 1 \}$$
, Temp $(0) = \text{ large}$ Temp $(t+1) = 0.9$ Temp (t) , Temp $(0) = \text{ large}$

- High temperature: almost always accept any s'.
- Low temperature: first choice hill climbing.

Simulated Annealing Example 1 Quiz

• Suppose we are minimizing and f(s) = 6, f(t) = 5, T = 4.

What is the probability we move from s to t in the next step?

What is the probability we move from t to s in the next step?

Simulated Annealing Example 2

Quiz

- Suppose we are minimizing and $f(s) = 0, f(t) = \log(5), T = 1$. What is the probability we move from s to t.
- A: 0

- E: 5

$$\frac{1057}{1} = \left(2097\right)^{-1} = \frac{1}{5}$$

Simulated Annealing

Algorithm

- Input: state space S, temperature function Temp, and cost function f.
- Output: $s^* \in S$ that minimizes f(s).
- Start at a random state s₀.
- At iteration t, generate a random neighbor s', and update the state according to the following rule.

$$s_{t+1} = \begin{cases} s' & \text{if } f\left(s'\right) < f\left(s_{t}\right) \\ s' & \text{with probability } \exp\left(-\frac{\left|f\left(s'\right) - f\left(s_{t}\right)\right|}{\mathsf{Temp}\left(t\right)}\right) \\ s_{t} & \text{otherwise} \end{cases}$$

Simulated Annealing Performance

Discussion

- Use hill-climbing first.
- Neighborhood design is the most important.
- In theory, with infinitely slow cooling rate, SA finds global minimum with probability 1.

Genetic Algorithm

Description

- Start with a fixed population of initial states.
- Find the successors by:
- Cross over.
- Mutation.

Reproduction Probability

Definition

• Each state in the population has probability of reproduction proportional to the fitness. Fitness is the opposite of the cost: higher cost means lower fitness. Use F to denote the fitness function, for example, $F(s) = \underbrace{\frac{1}{f(s)}}_{cost}$ is a valid fitness function.

$$p_{i} = \frac{F(s_{i})}{N}, i = 1, 2, ..., N$$

$$\sum_{i=1}^{N} F(s_{i})$$

 A pair of states are selected according to the reproduction probabilities (using CDF inversion).

- The states need to be encoded by strings.
- Cross over means swapping substrings.
- For example, the children of 10101 and 01010 could be the same as the parents or one of the following variations.

(11010, 00101), (10010, 01101) (10110, 01001), (10100, 01011)

Mutation Definition

- The states need to be encoded by strings.
- Mutation means randomly updating substrings. Each character is changed with small probability q, called the mutation rate.
- For example, the mutated state from 000 could stay the same or be one of the following.

one of 001, 010, 100, with probability $q(1-q)^2$ one of 011, 101, 110, with probability $q^2(1-q)$ and 111, with probability q^3

Fitness Example 1

Quiz

• Fall 1999 Final Q5 pick some powere Trice.

- Which ones (multiple) of the following states have the highest reproduction probability? (x)
- The fitness function is $A(x) = 5x_1 + 3x_2x_3 x_4 + 2x_5$.
- D: (1,0,1,1,1) 6
- E: (1,0,0,0,0) \longrightarrow 5

Q b

Fitness Example 2

maybe no on Fri

 Which one of the following states have the highest reproduction probability? The fitness function is

 $f(x) = \min \{t \in \{1, 2, 3, 4, 5, 6\} : x_t = 1\} \text{ with } x_6 = 1.$

- A: (0,0,1,0,0)
- B: (0,1,0,0,1)
- C: (0,0,1,1,0)
- D: (0,0,0,1,0)
- E: (0,0,0,0,0)

F(x) = 3

= }

1

—

ob <u>6</u> 3+2+3+4+6

mex fitness

Fitness Example 3

Quiz

- Which one of the following states have the highest reproduction probability? The fitness function is $f(x) = \max\{t \in \{0, 1, 2, 3, 4, 5\} : x_t = 1\} \text{ with } x_0 = 1.$
- A: (0,0,<u>1</u>,0,0)

• B: (0,1,0,0,1) • C: (0,0,1,1,0) 4

- D: (0,0,0,1,0)
- E: (0,0,0,0,0)

Genetic Algorithm, Part I

Algorithm

- Input: state space S represented by strings s and cost function f or fitness function F.
- Output: $s^* \in S$ that minimizes f(s).
- Randomly generate N solutions as the initial population.

$$s_1, s_2, ..., s_N$$

Compute the reproduction probability.

$$p_i = \frac{F(s_i)}{N}, i = 1, 2, ..., N$$

 $\sum_{j=1}^{N} F(s_j)$

Genetic Algorithm, Part II

Algorithm

• Randomly pick two states according to p_i , say s_a , s_b . Randomly select a cross over point c, swap the strings.

$$s'_{a} = s_{a} [0...c) s_{b} [c...m]$$

 $s'_{b} = s_{b} [0...c) s_{a} [c...m]$

 Randomly mutate each position of each state s_i with a small probability (mutation rate).

$$s_i'[k] = \begin{cases} s_i[k] & \text{with probability } 1-q \\ \text{random} & \text{with probability } q \end{cases}, k = 1, 2, ..., m$$

Repeat with population s'.

Genetic Algorithm Performance

Discussion

- Use hill-climbing first.
- State design is the most important.
- In theory, cross over is much more efficient than mutation.

