CS540 Introduction to Artificial Intelligence Lecture 17

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

July 26, 2021

Bridge and Torch Game

Four people with one flashlight (torch) want to go across a river. The bridge can hold two people at a time, and they must cross with the flashlight. The time it takes for each person to cross the river:

Α	В	С	D
1	2	4	5

- What is the minimum total time required for everyone to cross the river?
- A: 10, B: 11, C: 12, D: 13, E: 14

Remind Me to Start Recording

• The messages you send in chat will be recorded: you can change your Zoom name now before I start recording.

Reduced Space Example 2

Quiz

go through

Triday

[1]

•
$$\hat{\Sigma} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 . If one original data is $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. What is

the new representation using only the first two principal components?

• A:
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, B: $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$, C: $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$, D: $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$, E: $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$

Reduced Space Example 3

•
$$\hat{\Sigma} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
. If one original data is $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. What is

the reconstructed vector using only the first two principal components?

• A:
$$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
, B: $\begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$, C: $\begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$, D: $\begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$, E: $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

Mear Mear

Autoencoder

Discussion

 A multi-layer neural network with the same input and output $y_i = x_i$ is called an autoencoder.

 The hidden layers have fewer units than the dimension of the input *m*.

the input with reduced PCA The hidden units form an encoding of

 A kernel can be applied before finding the principal components.

$$\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} \varphi(x_i) \varphi(x_i)^T$$
where the transformed feature

- The principal components can be found without explicitly computing $\varphi(x_i)$, similar to the kernel trick for support vector machines.
- Kernel PCA is a non-linear dimensionality reduction method.

Learning vs Search

- In reinforcement learning, the reward and state transition need to be learned by taking actions.
- In search problems, the reward and state transitions are given.
- The problem is to find a <u>sequence</u> of actions that lead to the goal with minimum cost.

Bridge and Torch Game Again

Motivation

 Four people with one flashlight (torch) want to go across a river. The bridge can hold two people at a time, and they must cross with the flashlight. The time it takes for each person to cross the river:

Α	В	С	D
1	2	4	5

Bridge and Torch Game States 1

Bridge and Torch Game States 2

Motivation

Sizes of State Space

Motivation

Tic Tac Toe: 10³

Checkers: 10²⁰
Chess: 10⁵⁰
Go: 10¹⁷⁰

adversaria) seach. (next neeb)

Performance

Definition

- A search strategy is complete if it finds at least one solution.
- A search strategy is optimal if it finds the optimal solution.
- For uninformed search, the costs are assumed to be 1 for all edges c = 1.

Complexity

Definition

- The time complexity of a search strategy is the worst case maximum number of vertices expanded.
- The space complexity of a search strategy is the worst case maximum number of states stored in the frontier at a single time.
- Notation: the goals are d edges away from the initial state.
 This means assuming a constant cost of 1, the optimal solution has cost d. The maximum depth of the graph is D.
- Notation: the branching factor is b, the maximum number of actions associated with a state.

$$b = \max_{s \in V} \left| s'\left(s\right) \right|$$

Search Tree Diagram

Definition

Breadth First Search Description

- Use Queue (FIFO) for the frontier.
- Remove from the front, add to the back.

expanded expanded ...

BFS Example 1

 Fall 2018 Midterm Q2, Fall 2017 Midterm Q13, Fall 2010 Final Q2 Costy = Suppose the states are positive integers between 1 and 10, initial state is 1, goal state is 9, successors of i is 2i and $500^{\circ}2i + 1$ (if exist). What a BFS expansion sequence? SUECESSONS!

BFS Example 1 Diagram

Quiz

space of 3

transluer.

BFS Example 2

Quiz

• Suppose the states are integers between 1 and $2^{10} = 1024$. The initial state is 1, and the goal state is 1024. The successors of a state i are 2i and 2i + 1, if exist. How many states are expanded during a BFS search?

· A: 10 < shown length

• C: 12

D: 1023

XZX4567

BFS Example 3

Quiz

• Suppose the states are integers between 1 and $2^{10} - 1 = 1023$. The initial state is 1, and the goal state is 1023. The successors of a state i are 2i and 2i + 1, if exist. How many states are expanded during a BFS search?

• A: 10

B: 11

• C: 12

D: 1023

E: 1024

Breadth First Search Performance

Discussion

- BFS is complete.
- BFS is optimal with c = 1.

Breadth First Search Complexity

Discussion

 Time complexity: the worst case occurs when the goal is the last vertex at depth d.

$$T \stackrel{\swarrow}{=} b + b^2 + \dots + b^d$$

 Space complexity: the worst case is storing all vertices at depth d is in the frontier.

Depth First Search

Description

- Use Stack (LIFO) for the frontier.
- Remove from the front, add to the front.

DFS Example 1 Quiz

Spare. 3.5,89, Aire: 1.2,4,8,9

Fall 2018 Midterm Q2, Fall 2017 Midterm Q13, Fall 2010
 Final Q2

Suppose the states are positive integers between 1 and 10, initial state is 1, goal state is 9, successors of i is 2i and 2i + 1 (if exist). What a DFS expansion sequence?

DFS Example 1 Diagram

DFS Example 2

Quiz

Q4 —

Suppose the states are integers between 1 and $2^{10} = 1024$. The initial state is 1, and the goal state is 1024. The successors of a state i are 2i and 2i + 1, if exist. How many states are expanded during a DFS search?

• A: 10

B: 11 9, 9

H. 5 ZI

pushed

• C: 12 2²

D: 1023

E: 1024

Goal is expanded

DFS Example 3

Quiz

QJ

• Suppose the states are integers between 1 and $2^{10} - 1 = 1023$. The initial state is 1, and the goal state is 1023. The successors of a state *i* are 2*i* and 2*i* + 1, if exist. How many states are expanded during a DFS search?

A: 10

B: 11

• C: 12

D: 1023

E: 1024

Depth First Search Performance

Discussion

- DFS is incomplete if $D = \infty$.
- DFS is not optimal.

Depth First Search Complexity

Discussion

 Time complexity: the worst case occurs when the goal is the root of the last subtree expanded in the whole graph.

$$T = b^{D-d+1}... + b^{D-1} + b^{D}$$

 Space complexity: the worst case is storing all vertices sharing the parents with vertices in the current path.

$$S = (b-1)D + 1$$

Iterative Deepening Search

Description

- DFS but stop if path length > 1
- repeat DFS but stop if path length > 2
- ...
- repeat DFS but stop if path length > d

IDS Example 1 Quiz

- Fall 2018 Midterm Q2, Fall 2017 Midterm Q13, Fall 2010
 Final Q2
- Suppose the states are positive integers between 1 and 10, initial state is 1, goal state is 9, successors of i is 2i and 2i + 1 (if exist). What a IDS expansion sequence?

IDS Example 1 Diagram

Iterative Deepening Search

Algorithm

- Input: a weighted digraph (V, E, c), initial states I and goal states G.
- Output: a path from I to G.
- Perform DFS on the digraph restricted to vertices with depth
 ≤ 1 from the initial state.
- Perform DFS on the digraph restricted to vertices with depth
 ≤ 2 from the initial state.
- Repeat until the goal is deQueued.

Iterative Deepening Search Performance

Discussion

- IDS is complete.
- IDS is optimal with c = 1.

Iterative Deepening Search Complexity

Discussion

 Time complexity: the worst case occurs when the goal is the last vertex at depth d.

$$T = db + (d-1)b^{2} + \dots + 3b^{d-2} + 2b^{d-1} + 1b^{d}$$

Space complexity: it has the same space complexity as DFS.

$$S = (b-1) d$$

Configuration Space

Discussion