CS540 Introduction to Artificial Intelligence Lecture 19

Young Wu
Based on lecture slides by Jerry Zhu and Yingyu Liang

July 29, 2019

Zero-Sum Games

Motivation

- If the sum of the reward or cost over all players at each terminal state is 0, the game is called a zero-sum game.
- Usually, for games with one winner: the reward for winning and the cost of losing are both 1. If the game ends with a tie, both players get 0.

Tic Tac Toe Example

Motivation

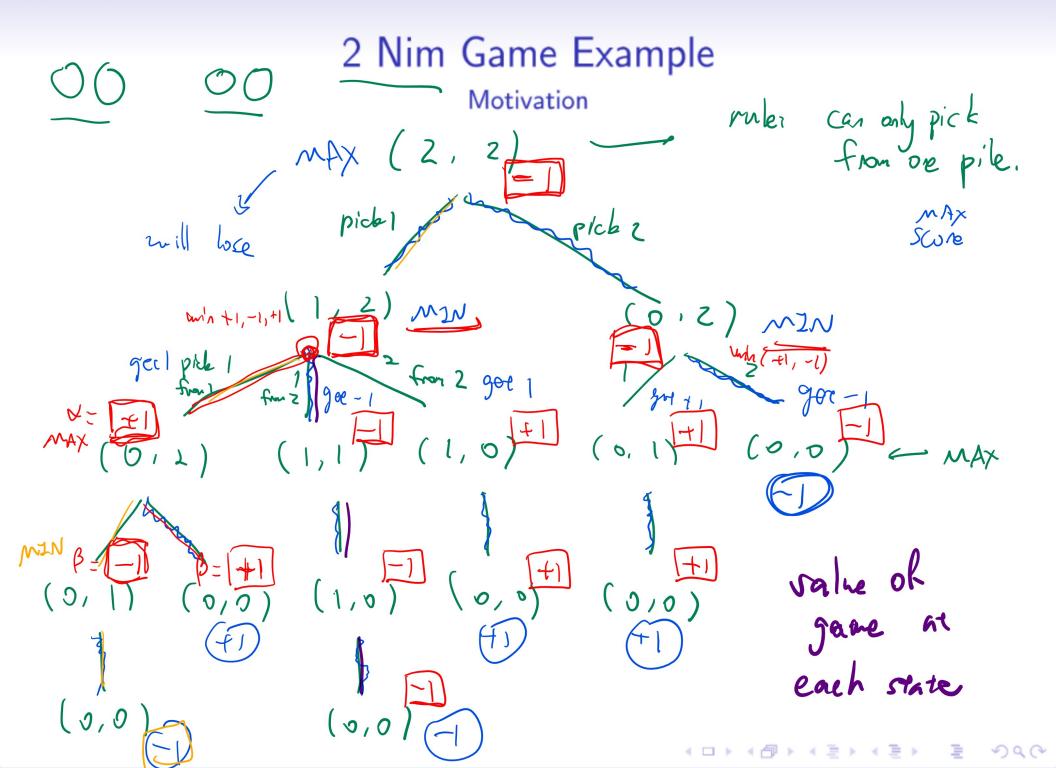
Nim Game Example

Quiz (Graded)

- Ten objects. Pick 1 or 2 each time. Pick the last one to win.
- A: Pick 1.
- B: Pick 2.
- C, D, E: Don't choose.

trick; want remaining &

to be
multiple of Z,



Minimax Algorithm

Description

Use DFS on the game tree.

Minimax Algorithm

Algorithm

- Input: a game tree (V, E, c), and the current state s.
- Output: the value of the game at s.
- If s is a terminal state, return c(s).
- If the player is MAX, return the maximum value over all sucessors.

$$\alpha\left(s\right) = \max_{s' \in s'\left(s\right)} \beta\left(s'\right)$$

 If the player is MIN, return the minimum value over all sucessors.

$$\beta\left(s\right) = \min_{s' \in s'\left(s\right)} \alpha\left(s'\right)$$

Backtracking

Discussion

 The optimal actions (solution paths) can be found by backtracking from all terminal states as in DFS.

$$s^{\star}\left(s\right) = \arg\max_{s' \in s'\left(s\right)} \beta\left(s'\right) \text{ for MAX}$$

$$s^{\star}\left(s\right) = \arg\min_{s' \in s'\left(s\right)} \alpha\left(s'\right) \text{ for MIN}$$

2 Nim Game Example

Minimax Performance

Discussion

• The time and space complexity is the same as DFS. Note that D = d is the maximum depth of the terminal states.

$$T = b + b^2 + \dots + b^d$$
$$S = (b-1) \cdot d$$

Non-deterministic Game

- For non-deterministic games in which chance can make a move (dice roll or coin flip), use expected reward or cost instead.
- The algorithm is also called expectiminimax.

Game Tree with Chance Example

Quiz (Graded)

- Fall 2005 Midterm Q7
- Max can pick L or R. If Max picks L, Chance picks L with probability 0.3 and R with probability 0.7. If Chance picks L, Min picks L to get 3, R to get 2, and if Chance picks R, Min gets 7. If Max picks R, Min picks L to get -1 and R to get 2.

What is the value of the game?

• A: -1

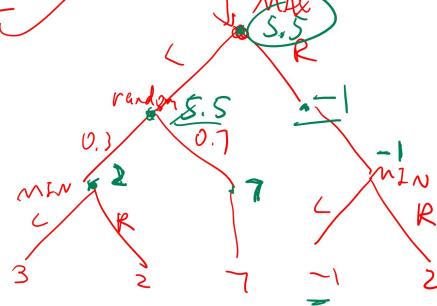
B: 2

2.013+7.0.7

C: 5.5

• D: 5.8

E: 7



Pruning Motivation

- Time complexity is a problem because the computer usually has a limited amount of time to "think" and make a move.
- It is possible to reduce the time complexity by removing the branches that will not lead the current player to win. It is called the Alpha-Beta pruning.

Alpha Beta Pruning

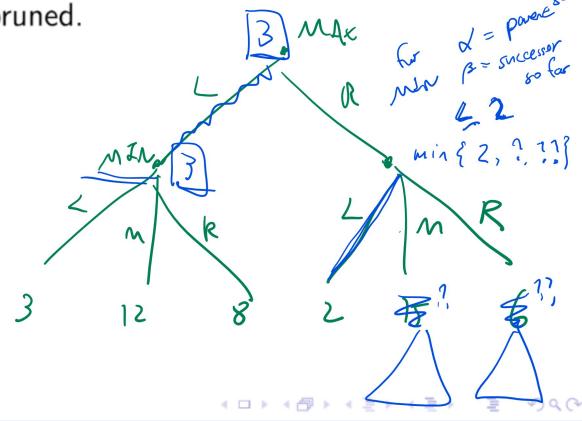
Description

- During DFS, keep track of both α and β for each vertex.
- Prune the subtree with $\alpha \geqslant \beta$.

Alpha Beta Simple Example

Quiz (Grade)

- Fall 2014 Final Q13
- After MAX picks L, MIN can pick L, M, R to get 3, 12, 8.
 After MAX picks R, MIN can pick L, M, R to get 2, 15, 6.
 Which vertices can be pruned.
- A: M after L
- B: R after L
- C: L after R
- D: M after R
- E: R after R



Alpha Beta Example, Part I

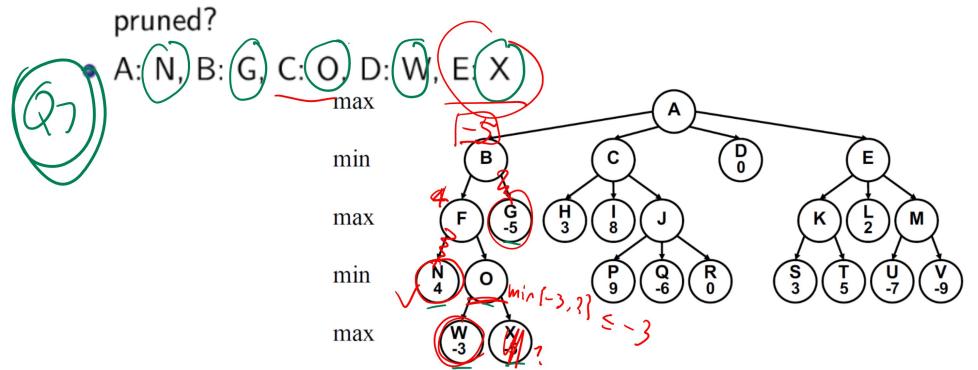
Quiz (Graded)



Alpha Beta Example, Part II

Quiz (Graded)

Which one of the following vertices can be Alpha Beta



Alpha Beta Example, Part III

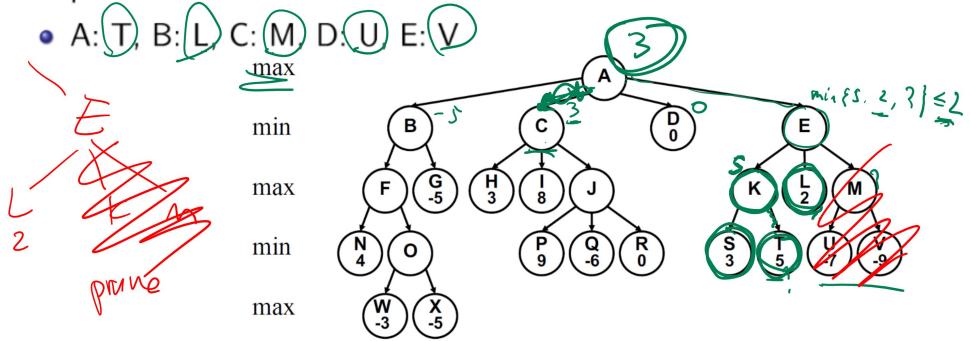
Quiz (Graded)

 Which one of the following vertices can be Alpha Beta pruned? Jul 13, 7, 23 min В max min max

Alpha Beta Example, Part IV

Quiz (Graded)

• Which one of the following vertices can be Alpha Beta pruned?



Alpha Beta Pruning Algorithm, Part I

- Input: a game tree (V, E, c), and the current state s.
- Output: the value of the game at s.
- If s is a terminal state, return c(s).

Alpha Beta Pruning Algorithm, Part II

Algorithm

 If the player is MAX, return the maximum value over all sucessors.

$$\alpha(s) = \max_{s' \in s'(s)} \beta(s')$$
$$\beta(s) = \beta(\text{parent } (s))$$

- Stop and return β if $\alpha \geqslant \beta$.
- If the player is MIN, return the minimum value over all sucessors.

$$\beta(s) = \min_{s' \in s'(s)} \alpha(s')$$
$$\alpha(s) = \alpha(\text{parent } (s))$$

• Stop and return α if $\alpha \geqslant \beta$.

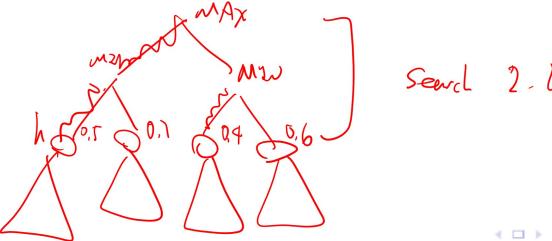
Alpha Beta Performance

- In the best case, the best action of each player is the leftmost child.
- In the worst case, Alpha Beta is the same as minimax.

Static Evaluation Function

Definition

- A static board evaluation function is a heuristics to estimate the value of non-terminal states.
- It should reflect the player's chances of winning from that vertex.
- It should be easy to compute from the board configuration.



Evaluation Function Properties Definition

- If the SBE for one player is x, then the SBE for the other player should be -x.
- The SBE should agree with the cost or reward at terminal vertices.

Linear Evaluation Function Example

Definition

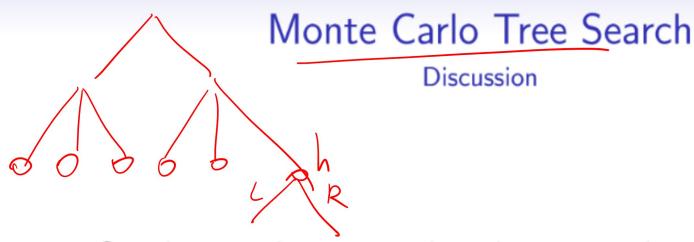
- For Chess, an example of an evaluation function can be a linear combination of the following variables.
- Material. 🔏
- Mobility.
- King safety. χ_j
- Center control.
 - These are called the features of the board.

Iterative Deepening Search

- IDS could be used with SBE.
- In iteration d, the depth is limited to d, and the SBE of the non-terminal vertices are used as their cost or reward.

Non Linear Evaluation Function

- The SBE can be estimated given the features using a neural network.
- The features are constructed using domain knowledge, or a possibly a convolutional neural network.
- The training data are obtained from games between professional players.



- Simulate random games by selecting random moves for both players.
- Exploitation by keeping track of average win rate for each successor from previous searches and picking the successors that lead to more wins.
- Exploration by allowing random choices of unvisited successors.

Monte Carlo Tree Search Diagram

Upper Confidence Bound

Discussion

 Combine exploitation and exploration by picking sucessors using upper confidence bound for tree.

$$\frac{w_s}{n_s} + c\sqrt{\frac{\log t}{n_s}}$$

- w_s is the number of wins after successor s, and n_s the number of simulations after successor s, and t is the total number of simulations.
- Similar to the UCB algorithm for MAB.

Alpha GO Example

- MCTS with $> 10^5$ playouts.
- Deep neural network to compute SBE.