CS540 Introduction to Artificial Intelligence Lecture 1

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

May 9, 2020

Lecture Format

- Pre-recorded lectures will be posted on the course website.
- University-assigned lecture time will be used to go over examples and for participation quizzes.
- The remaining lecture time will be used as office hours.

Grading Admin

- Quizzes: best 10 of 12 or double exam weights.
- Math homework: best 10 of 10 + 2. 70%
- Programming homework: best $\underline{5}$ of $\underline{5} + \underline{1}$. 40%
- Exams: one midterm and one final, 10 points each.

Quizzes Admin

- Download Socrative, the room number is CS540E or CS540C.
- Default login for Socrative is your wisc email ID.
- If someone else tries to hack your account, please email or post on Piazza.
- Quiz questions can show up any time during the lecture.
- Missing one or two questions due to technical difficulty is okay.
- If you select obviously false answers, you might lose points.

Blank Quiz

Math Homework

- Officially: due in 1 week Sunday.
- Unofficially: any time before the midterm or the final.
- Auto-graded: submit the output on Canvas.

Programming Homework

- Officially: due in 2 weeks Sunday.
- Unofficially: any time before the final.
- Solution: posted in 1 week Sunday.
- Auto-graded: submit the output on Canvas.
- Code: any language.

Midterm and Final

 Synchronous exam: morning and evening one, choose one to take.

(Not recommended) Ways to Get B+

- Not attending any lecture.
- Not doing any math homework.
- Not doing half of the programming homework.
- Not taking any of the exams (only this summer).

Only Way to Get A

• Do everything.

Textbook Admin

- Lecture slides and videos will be sufficient.
- RN is a good background reading, does not cover everything.
- SS is very theoretical, useful if you are planning to take 760, 761, 861.

Admin Admin

- Math and Stat Review posted under W1.
- Annotated slides will not be posted (because my handwriting is not recognizable).
- Unofficially: all homework are already posted (lots of mistakes and bugs).
- Officially: homework will be posted two to three days after the corresponding lecture.

Blank Quiz

Is This Face Real

- Which face is real?
- A: Left
- B: Right
- C: Do not choose this
- D: Do not choose this
- E: Do not choose this

Generative Adversarial Network

- Generative Adversarial Network (GAN):
- O Generative part: input random noise and output fake images.
- Discriminative part: input real and fake images and output labels real or fake.
 - The two parts compete with each other.

Supervised Learning Example 1

Data C	images of cats and dogs
Features (Input)	height, length, eye color,
-	pixel intensity
Output \subset	cat or dog

Supervised Learning Example 2

Data	patient information		
Features (Input)	age, pre-existing conditions,		
Output	likelihood of death		

Supervised Learning Example 3

Data	face images	2
Features (Input)	edges corners,	
Output	face or non-face	

Data	self-driving car data 40		
Features (Input)	distance (depth), movement,		
Output	road or non-road		

Output

Supervised Learning Example 5 Motivation

Data	reviews	
Features (Input)	word count, capitalization,	
Output	positive or negative	

Data	financial transactions		
Features (Input)	amount, frequency,		
Output	fraud or not		

Supervised Learning Example 6 O Notivation

Data	voice recording			
Features (Input)	signal, (sound) (phoneme)			
Output	recognize speech or wreck a nice beach			
	Z			

Supervised Learning Example 7 Motivation

Data	painting	
Features (Input)	appearance, price,	
Output	art or garbage	

Data	essay ∠
Features (Input)	length, key words
Output	A+ or F

Supervised Learning

Motivation

 $\int_{-\infty}^{\infty} (x) \approx 0$

Supervised learning:

7 M # mages
N # label

Data	Features (Input)	Output	_
Sample	$\{(x_{i1},,x_{im})\}_{i=1}^{n}$	$\{y_i\}_{i=1}^n$	find "best" \hat{f}
-	observable	known	- 7
New	$(x'_1,,x'_m)$	<u>y'</u>	guess $\hat{y} = (\hat{f})(x')$
-	observable	unknown	

Training and Test Sets

Motivation

Supervised learning:

$\int \hat{f} (x)$	
(f ₂ (x))	2

,	Data	Features (Input)	Output	_
	Training	$\{(x_{i1},,x_{im})\}_{i=1}^{n'}$	$\{y_i\}_{i=1}^n$	find "goo <u>d" </u> \hat{f}
(Sample)		observable	known	-
1	Validation	$\{(x_{i1},,x_{im})\}_{i=n'}^n$	$\{y_i\}_{i=n'}^n$	find "best" \hat{f}
(_	observable	known	-
	Test	$(x'_1,,x'_m)$	y'	guess $\hat{y} = \hat{f}(x')$
	-	observable	unknown	-

Simple 2D Example Diagram

Linear Classifier

Motivation

One possible guess is in the form of a linear classifier.

$$\hat{y} = 1_{w_1 \times_1 + w_2 \times_2 + ... + w_m \times_m + b \ge 0}$$

$$= 1_{w_1 \times_1 + w_2 \times_2 + ... + w_m \times_m + b \ge 0}$$

$$= 1_{w_1 \times_1 + w_2 \times_2 + ... + w_m \times_m + b \ge 0}$$

$$= 1_{w_1 \times_1 + w_2 \times_2 + ... + w_m \times_m + b \ge 0}$$

$$+ features$$

• The 1 (open number 1) is the indicator function.

$$\mathcal{W}^{T} = \left\{ \begin{array}{l}
1 & \text{if } \underline{E} \text{ is true} \\
0 & \text{if } \underline{E} \text{ is false}
\end{array} \right.$$

$$\mathcal{W}^{T} \times \{b = (w_{1}, w_{2}, \dots, w_{m}) \mid \begin{cases} x_{1} \\ x_{2} \\ x_{m} \end{cases} + b = w_{1} \times x_{1} + w_{2} \times x_{2} + \dots + x_{m} + b = w_{m} \times x_{m} + b = w_{1} \times x_{1} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + b = w_{1} \times x_{1} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + b = w_{1} \times x_{1} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + b = w_{1} \times x_{1} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + b = w_{1} \times x_{1} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + b = w_{1} \times x_{1} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + b = w_{1} \times x_{1} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + b = w_{1} \times x_{1} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + b = w_{1} \times x_{1} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + b = w_{1} \times x_{1} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + b = w_{1} \times x_{1} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + b = w_{1} \times x_{1} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + b = w_{1} \times x_{1} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + b = w_{1} \times x_{1} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + b = w_{1} \times x_{1} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + b = w_{1} \times x_{1} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + b = w_{1} \times x_{1} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + b = w_{1} \times x_{1} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + b = w_{1} \times x_{1} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + b = w_{1} \times x_{1} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + b = w_{1} \times x_{1} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + w_{2} + \dots + x_{m} \times x_{m} + w_{2} \times x_{2} + \dots + x_{m} \times x_{m} + \dots$$

Linear Threshold Unit

- This simple linear classifier is also called a <u>Linear Threshold</u>
 Unit (LTU) Perceptron.
- $w_1, w_2, ..., w_m$ are called the weights, and b is called the bias.
- The function that makes the prediction based on $w^Tx + b$ is called the activation function.
- For an LTU Perceptron, the activation function is the indicator function.

$$g(\boxed{\cdot}) \neq \mathbb{1}_{\left\{ \boxed{\cdot} \geqslant 0 \right\}}$$

Equation of a Line

- In 1D, $w_1x_1 + b \ge 0$ is just a threshold rule: $x_1 \ge -\frac{b}{w_1}$ implies $\hat{y} = 1$.
- In 2D, $w_1x_1 + w_2x_2 + b \ge 0$ can be written as $\begin{bmatrix} w_1 & w_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b \ge 0$. Note that $w_1x_1 + w_2x_2 + b = 0$ is the equation of a line, usually written as $x_2 = -\frac{w_1}{w_2}x_1 \frac{b}{w_2}$.

Equation of a Hyperplane

Motivation

• In 3D, $w_1x_1 + w_2x_2 + w_3x_3 + b \ge 0$ can be written as

$$\begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \ge 0$$
. Note that

 $w_1x_1 + w_2x_2 + w_3x_3 + b = 0$ is the equation of a plane, and

$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$$
 is normal vector of the plane.

The normal vector is perpendicular to all vectors on the plane.

LTU Perceptron Training

- Given the training set $\{(x_1,y_1),(x_2,y_2),...,(x_n,y_n)\}$, the process of figuring out the weights and the bias is called training an LTU Perceptron.
- One algorithm to train an LTU Perceptron is called the Perceptron Algorithm.

Brute Force LTU Learning

Perceptron Algorithm

Description

- Initialize random weights.
- Evaluate the activation function at one instance x_i to get \hat{y}_i
- If the prediction \hat{y}_i is 0 and actual y_i is 1, increase the weights
 - If the prediction \hat{y}_i is 1 and actual y_i is 0, decrease the weights by x_i .
 - Repeat for all data points and until convergent.

Perceptron Algorithm Diagram, 1 Example

Description

Perceptron Algorithm, Part 1 Algorithm

- Inputs: instances: $\{x_i\}_{i=1}^n$ and $\{y_i\}_{i=1}^n$
- Outputs: weights and biases: $w_1, ..., w_m$, and b.
- Initialize the weights.

$$w_1, ..., w_m, b \sim Unif [-1, 1]$$

Unif [I, u] means picking a random number between I and u.

Evaluate the activation function at a single data point x_i.

$$a_i = \mathbb{1}_{\{w \tau_{x_i} + b \geqslant 0\}}$$

Perceptron Algorithm, Part 2

Algorithm

Update weights using the following rule.

$$w = w - \alpha (a_i - y_i) x_i$$

$$b = b + \alpha (a_i - y_i)$$

- Repeat the process for every x_i , i = 1, 2, ..., n.
- Repeat until $a_i = y_i$ for every i = 1, 2, ..., n.

Learning Rate

Discussion

• The learning rate α controls how fast the weights are updated.

- They can be constant for each update or they can change (usually decrease) for each update.
- For perceptron learning, it is typically set to 1.

Perceptron Algorithm Quiz