

Perceptron 000000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

CS540 Introduction to Artificial Intelligence Lecture 1

Young Wu Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

June 21, 2021

Supervised Learning

Perceptron 000000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lecture Format

- Pre-recorded lectures will be posted on the course website.
- University-assigned lecture time will be used to go over examples and quizzes.
- The hour after the lecture will be used as office hours.

Supervised Learning

Perceptron 000000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lecture Recording

- The Zoom lectures will be recorded and can be accessed on Canvas.
- All course materials will be covered in the pre-recorded lectures on YouTube.
- The annotated lecture notes (with quiz questions) will be posted on the Course Website.

Supervised Learning

Perceptron 000000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Zoom Login

- You can log in Zoom anonymously using any name you like (preferably one that can be pronounced easily and nothing offensive please).
- You have to log in Socrative with you real wisc ID.

Supervised Learning

Perceptron 000000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Grading Admin

- Quizzes: best 20 of 24, daily, 0 or 0.5 points each.
- Math homework: best 10 of 10 + 2, weekly, 0 or 1 point each.
- Programming homework: best 5 of 5 + 1, weekly, 8 points each.
- Exams: one midterm and one final, 30 or 25 or 20 points each.

Supervised Learning

Perceptron 000000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Download Socrative, the room number is CS540.
- Default login for Socrative is your wisc email ID.
- If someone else tries to hack your account, please email or private post on Piazza.
- Quiz questions can show up any time during the lecture.
- Missing one or two questions due to technical difficulty is okay.
- If you select obviously false answers, you will lose points.

Supervised Learning

Perceptron 00000000000

Blank Quiz

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Supervised Learning

Perceptron 000000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Math Homework

- Please do not start before I announce it on Canvas and Piazza.
- Officially: due in 1 week Sunday.
- Unofficially: any time before the midterm or the final.
- Solution: please volunteer to share your answers on Piazza.
- Auto-graded: unlimited number of times, I will not see your submission as long as you do not click the "Submit" button.

Perceptron 000000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Programming Homework

- Please do not start before I announce it on Canvas and Piazza.
- Officially: due in 2 weeks Sunday.
- Unofficially: any time before the final.
- Solution: posted in 1 week Sunday.
- Auto-graded: use the "Submit" button AND submit the output and code on Canvas.
- Code: any language, Java and Python are recommended, MATLAB, R, JavaScript okay too.

Supervised Learning

Perceptron 000000000000

Midterm and Final

- Synchronous exams: two parts, 12 : 30 PM and 12 : 30 AM versions, choose any two to take.
- 30 Questions: \sim 10 from homework, \sim 10 from homework or quizzes, \sim 10 new.

Supervised Learning

Perceptron 000000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Textbook Admin

- Lecture slides and videos should be sufficient.
- RN is a good background reading, does not cover everything.
- SS is very theoretical, useful if you are planning to take 760, 761, 861.

Supervised Learning

Perceptron 00000000000

Blank Quiz

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Supervised Learning

Perceptron 000000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Generative Adversarial Network Motivation

- Generative Adversarial Network (GAN):
- **(** Generative part: input random noise and output fake images.
- Oiscriminative part: input real and fake images and output labels real or fake.
- The two parts compete with each other.

Perceptron 000000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Supervised Learning Example 1

Data	images of cats and dogs
Features (Input)	height, length, eye color,
-	pixel intensity
Output	cat or dog

Supervised Learning

Perceptron 000000000000

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Supervised Learning Example 2 Motivation

Data	medical records
Features (Input)	scan, blood, and other test results
Output	disease or no

Data	patient information
Features (Input)	age, pre-existing conditions,
Output	likelihood of death

Perceptron 000000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Supervised Learning Example 3 Motivation

Data	face images
Features (Input)	edges, corners,
Output	face or non-face

Data	self-driving car data
Features (Input)	distance (depth), movement,
Output	road or non-road

Supervised Learning

Perceptron 000000000000

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Supervised Learning Example 4

Data	emails
Features (Input)	word count, capitalization,
Output	spam or ham

Data	comments
Features (Input)	word count, capitalization,
Output	offensive or not

Supervised Learning

Perceptron 000000000000

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Supervised Learning Example 5 Motivation

Data	reviews
Features (Input)	word count, capitalization,
Output	positive or negative

Data	financial transactions
Features (Input)	amount, frequency,
Output	fraud or not

Perceptron 000000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Supervised Learning Example 6

Data	handwritten letters
Features (Input)	pixel, stroke
Output	δ or $\sigma, arphi$ or ψ

Data	voice recording
Features (Input)	signal, sound (phoneme)
Output	recognize speech or wreck a nice beach

Perceptron 000000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Supervised Learning Example 7 Motivation

Data	painting
Features (Input)	appearance, price,
Output	art or garbage

Data	essay	
Features (Input)	length, key words	
Output	A+ or F	

Supervised Learning

Perceptron 000000000000

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Supervised Learning

• Supervised learning:

Data	Features (Input)	Output	-
Sample	$\{(x_{i1},,x_{im})\}_{i=1}^{n}$	$\{y_i\}_{i=1}^n$	find "best" \hat{f}
-	observable	known	-
New	$(x'_1,, x'_m)$	у′	guess $\hat{y} = \hat{f}(x')$
-	observable	unknown	-

Perceptron 000000000000

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Training and Test Sets

• Supervised learning:

Data	Features (Input)	Output	-
Training	$\{(x_{i1},,x_{im})\}_{i=1}^{n'}$	$\{y_i\}_{i=1}^{n'}$	find "good" \hat{f}
-	observable	known	-
Validation	$\{(x_{i1},,x_{im})\}_{i=n'}^{n}$	$\{y_i\}_{i=n'}^n$	find "best" \hat{f}
-	observable	known	-
Test	$(x'_1,, x'_m)$	y'	guess $\hat{y} = \hat{f}(x')$
-	observable	unknown	-

Perceptron 000000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Simple 2D Example Diagram

Supervised Learning

Perceptron •00000000000

Linear Classifier

• One possible guess is in the form of a linear classifier.

$$\hat{y} = \mathbb{1}_{\{w_1 x_1 + w_2 x_2 + \dots + w_m x_m + b \ge 0\}}$$

= $\mathbb{1}_{\{w^T x_+ b \ge 0\}}$

• The 1 (open number 1) is the indicator function.

$$\mathbb{1}_{E} = \begin{cases} 1 & \text{if } E \text{ is true} \\ 0 & \text{if } E \text{ is false} \end{cases}$$
(1)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Perceptron 0000000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Linear Threshold Unit

- This simple linear classifier is also called a Linear Threshold Unit (LTU) Perceptron.
- $w_1, w_2, ..., w_m$ are called the weights, and b is called the bias.
- The function that makes the prediction based on $w^T x + b$ is called the activation function.
- For an LTU Perceptron, the activation function is the indicator function.

$$g\left(\bigcirc \right) = \mathbb{1}_{\left\{ \bigcirc \geqslant 0 \right\}}$$

Supervised Learning

Perceptron 00000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Equation of a Line

- In 1D, $w_1x_1 + b \ge 0$ is just a threshold rule: $x_1 \ge -\frac{b}{w_1}$ implies $\hat{y} = 1$.
- In 2D, $w_1x_1 + w_2x_2 + b \ge 0$ can be written as $\begin{bmatrix} w_1 & w_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b \ge 0$. Note that $w_1x_1 + w_2x_2 + b = 0$ is the equation of a line, usually written as $x_2 = -\frac{w_1}{w_2}x_1 - \frac{b}{w_2}$.

Perceptron 000000000000

Equation of a Hyperplane Motivation

• In 3D,
$$w_1x_1 + w_2x_2 + w_3x_3 + b \ge 0$$
 can be written as

$$\begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \ge 0.$$
 Note that
 $w_1x_1 + w_2x_2 + w_3x_3 + b = 0$ is the equation of a plane, and

$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$$
 is normal vector of the plane.

• The normal vector is perpendicular to all vectors on the plane.

Supervised Learning

Perceptron 000000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

LTU Perceptron Training Motivation

- Given the training set {(x₁, y₁), (x₂, y₂), ..., (x_n, y_n)}, the process of figuring out the weights and the bias is called training an LTU Perceptron.
- A training data point x_i is also called an instance.
- One algorithm to train an LTU Perceptron is called the Perceptron Algorithm.

Perceptron 000000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Brute Force LTU Learning

Motivation

Supervised Learning

Perceptron 000000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Perceptron Algorithm

- Initialize random weights.
- Evaluate the activation function at one instance x_i to get \hat{y}_i .
- If the prediction ŷ_i is 0 and actual y_i is 1, increase the weights by x_i.
- If the prediction ŷ_i is 1 and actual y_i is 0, decrease the weights by x_i.
- Repeat for all data points and until convergent.

Supervised Learning

Perceptron 0000000000000

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Perceptron Algorithm Diagram, 0 Example

Supervised Learning

Perceptron 0000000000000

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Perceptron Algorithm Diagram, 1 Example

Perceptron 00000000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Perceptron Algorithm, Part 1 Algorithm

- Inputs: instances: $\{x_i\}_{i=1}^n$ and $\{y_i\}_{i=1}^{n}$
- Outputs: weights and biases: $w_1, ..., w_m$, and b.
- Initialize the weights.

 $w_1, ..., w_m, b \sim$ Unif [-1, 1]

Unif [I, u] means picking a random number between I and u.

• Evaluate the activation function at a single data point $x_{i.}$

$$a_i = \mathbb{1}_{\{w^T x_i + b \ge 0\}}$$

Supervised Learning

Perceptron 00000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Perceptron Algorithm, Part 2 Algorithm

• Update weights using the following rule.

$$w = w - \alpha (a_i - y_i) x_i$$
$$b = b - \alpha (a_i - y_i)$$

- Repeat the process for every $x_i, i = 1, 2, ..., n$.
- Repeat until $a_i = y_i$ for every i = 1, 2, ..., n.

Supervised Learning

Perceptron 0000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Learning Rate

- The learning rate α controls how fast the weights are updated.
- They can be constant for each update or they can change (usually decrease) for each update.
- For perceptron learning, it is typically set to 1.