CS540 Introduction to Artificial Intelligence Lecture 1

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

June 21, 2021

Socrative Admin

- Download the Socrative App or go to the Socrative website.
- Use Room CS540 log in with wisc ID.
- Choose "B" for the first question Q1.

Zoom Login Test

- Change your Zoom name to your favorite animal or plant (add a random number at the end to avoid repetition, for example "Cat88" or "Dog31").
- Send a public message in chat.
- Send a private message to someone who used the same name.

Remind Me to Start Recording Admin

Grading Admin

- Quizzes: best 20 of 24, daily, 0 or 0.5 points each.
- Math homework: best 10 of 10 + 2, weekly, 0 or 1 point each.
- Programming homework: best 5 of 5 + 1, weekly, 8 points each.
- Exams: one midterm and one final, 30 or 25 or 20 points each.

Quizzes Admin

- Download Socrative, the room number is CS540.
- Default login for Socrative is your wisc email ID.
- If someone else tries to hack your account, please email or private post on Piazza.
- Quiz questions can show up any time during the lecture.
- Missing one or two questions due to technical difficulty is okay.
- If you select obviously false answers, you will lose points.

Socrative Test Multiple Choice

- A: Don't choose this
- B: Choose this
 - C: Don't choose this
 - D: Don't choose this
 - E: Don't choose this
 - If you selected A, C, D, E by accident, please keep a note of the question name and the correct answer.

Socrative Test Short Answer

• Enter a random integer between 0 and 9.

Math Homework

- Please do not start before I announce it on Canvas and Piazza.
- Officially: due in 1 week Sunday.
- Unofficially: any time before the midterm or the final.
- Solution: please volunteer to share your answers on Piazza.
- Auto-graded: unlimited number of times, I will not see your submission as long as you do not click the "Submit" button.

Programming Homework Admin

- Please do not start before I announce it on Canvas and Piazza.
- Officially: due in 2 weeks Sunday.
- Unofficially: any time before the final.
- Solution: posted in 1 week Sunday.
- Auto-graded: use the "Submit" button AND submit the output and code on Canvas.
- Code: any language, Java and Python are recommended, MATLAB, R, JavaScript okay too.

Favorite Programming Language

≥ Q2

• What is your favorite programming language?

A: Yes

B: Java

C: Python

• D: Other

E: None

Programming Language Quiz

A2

 Which programming language are you planning to use for the assignments?

Office Hours

- Daily 2 to 3, weekdays on Zoom, weekends in person, for Math and Java Programming help.
- TA: Tuesday 3 to 5 in person, Thursday 3 to 5 on Zoom, for Math and Python Programming help.

Midterm and Final

- Synchronous exams: two parts, 12:30 PM and 12:30 AM versions, choose any two to take.
- 30 Questions: \sim 10 from homework, \sim 10 from homework or quizzes, \sim 10 new.

Questions

- Questions?
- Use public chat or just interrupt me if you have questions.
- I am not reading private chat, Piazza, and email messages during the lectures.

Is This Face Real

(23

- Which face is real?
- A: Left
- B: Do not choose this
- C: Do not choose this
- D: Do not choose this
- E: Right

Generative Adversarial Network

Motivation

- Generative Adversarial Network (GAN):
- $^{\prime\prime\prime}$ $^{\prime\prime}$ Generative part: input random noise and output fake images.
- Di<u>scriminative</u> part: input real and fake images and output labels real or fake.
- The two parts compete with each other.

Supervised Learning Example 1 Motivation

Data	images of cats and dogs			
Features (Input)	height, length, eye color,			
-	pixel intensity 4			
Output	cat or dog			

Supervised Learning

Motivation

• Supervised learning: 7 1 instance (item | abol

	Data	Features (Input/)	Output	
training	Sample	$\{(x_{i1},,x_{\underline{im}})\}_{i=1}^n$	$\{y_i\}_{i=1}^n$	find "best" \hat{f}
Set Or		observable	known	
	New	$(x'_1,,x'_m)$	<u>y'</u>	guess $\hat{y} = \hat{f}(x')$
	_	observable	unknown	

Linear Classifier

Motivation

• One possible guess is in the form of a linear classifier.

$$\hat{y} = 1_{\{w_1x_1 + w_2x_2 + ... + w_mx_m + b \ge 0\}}$$

$$= 1_{\{w^Tx + b \ge 0\}}$$

$$= 0$$

The 1 (open number 1) is the indicator function.

$$\mathbb{1}_{E} = \begin{cases} 1 & \text{if } E \text{ is true} \\ 0 & \text{if } E \text{ is false} \end{cases}$$
 (1)

Brute Force LTU Learning

Perceptron Algorithm Description

- Initialize random weights.
- Evaluate the activation function at one instance x_i to get \hat{y}_i .
- If the prediction ŷ_i is 0 and actual y_i is 1, increase the weights by x_i.
- If the prediction \hat{y}_i is 1 and actual y_i is 0, decrease the weights by x_i .
- Repeat for all data points and until convergent.

Perceptron Algorithm Diagram, 0 Example

Perceptron Algorithm

Definition

Update weights using the following rule.

 $w = w - \alpha (a_i - y_i) x_i$ $b = b - \alpha (a_i - y_i)$ $a_i = \mathbb{1}_{\{w^T x_i + b \ge 0\}}$ $\alpha := y_i : y_i$ $\alpha := y_i : y_i$

Perceptron Algorithm

Perceptron Algorithm, Answer

Perceptron Algorithm, Another One Quiz

• Let the learning rate be $\alpha = 0.1$. Currently

Let the learning rate be
$$\alpha = 0.1$$
. Currently $w = \begin{bmatrix} 0.2 \\ -0.3 \end{bmatrix}$, $b = 0.4$, and $x_i = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $y_i = 1$. What is the

updated weights $\begin{bmatrix} w \\ b \end{bmatrix}$?

$$\begin{bmatrix} w \\ b \end{bmatrix}$$
?

• D:
$$\begin{bmatrix} 0.2 \\ -0.2 \\ 0.3 \end{bmatrix}, E: \begin{bmatrix} 0.2 \\ -0.4 \\ 0.5 \end{bmatrix}$$

$$Q_{i} = 2$$

$$Q_{i} = 3$$

$$Q_{i} = 4$$

$$Q_{i} = 4$$

$$(0.2 -0.5)$$
 $\binom{0}{1}$ $to.4$ $(-0.3 + 0.4) > 0$ $toue$

Perceptron Algorithm, Another One, Answer

Perceptron Algorithm, Another One 2

• Let the learning rate be $\alpha = 0.1$. Currently

$$w = \begin{bmatrix} 0.2 \\ -0.3 \end{bmatrix}$$
, $b = 0.4$, and $x_i = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $y_i = 0$. What is the

updated weights
$$\begin{bmatrix} w \\ b \end{bmatrix}$$
?

• A:
$$\begin{bmatrix} 0.2 \\ -0.3 \\ 0.4 \end{bmatrix}$$
, B: $\begin{bmatrix} 0.2 \\ -0.2 \\ 0.5 \end{bmatrix}$, C: $\begin{bmatrix} 0.2 \\ -0.4 \\ 0.3 \end{bmatrix}$

• D:
$$\begin{bmatrix} 0.2 \\ -0.2 \\ 0.3 \end{bmatrix}$$
, E : $\begin{bmatrix} 0.2 \\ -0.4 \\ 0.5 \end{bmatrix}$

Perceptron Algorithm, Another One 2, Answer

Remind Me to Stop Recording

A6

 If you accidentally selected an obviously incorrect answer earlier, you can enter the question name and the correct answer here.