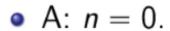
CS540 Introduction to Artificial Intelligence Lecture 20

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

July 15, 2020


Course Evaluation Admin

- M11 is course evaluation on AEFIS, please submit a course evaluation, it is very important for me! Thanks!
- If you have no comments and suggestions, please write "none".

Coordination Game

Admin

 You are not allowed to discuss anything about this question in the public chat. There will be around 5 new questions on the final exam. I will post n of them before the exam (probably next Tuesday): Stag Hurt Game.

- B: n = 1 if more than 50 percent of you choose B.
- C: n = 2 if more than 75 percent of you choose C.
- D: n = 3 if more than 98 percent of you choose D.
- E: n = 0.
- I will repeat this question a second time. If you fail to coordinate both times, I will not post any of the new questions.

Coordination Game Repeat

Admin

- You are not allowed to discuss anything about this question in the public chat. There will be around 5 new questions on the final exam. I will post n of them before the exam (probably next Tuesday):
- A: n = 0.
- B: n = 1 if more than 50 percent of you choose B.
- C: n = 2 if more than 75 percent of you choose C.
- D: n = 3 if more than 98 percent of you choose D.
 - E: n = 0.

Course Evaluation

Admin

P1 - P6 7.29 due 728

- M11 is course evaluation on AEFIS, please submit a course evaluation, it is very important for me! Thanks!
 - Thursday and Friday: Review Sessions.
 - Tuesday and Wednesday: Public Office Hours.

Guess Average Game

Motivation

on M12

 Write down an integer between 0 and 100 that is the closest to two thirds (2/3) of the average of everyone's (including yours) integers.

Rationalizability

Motivation

- An action is 1-rationalizable if it is the best response to some action.
- An action is 2-rationalizable if it is the best response to some 1-rationalizable action.
- An action is 3-rationalizable if it is the best response to some 2-rationalizable action.
- An action is rationalizable if it is ∞ -rationalizable.

Best Response

Definition

 An action is a best response if it is optimal for the player given the opponents' actions.

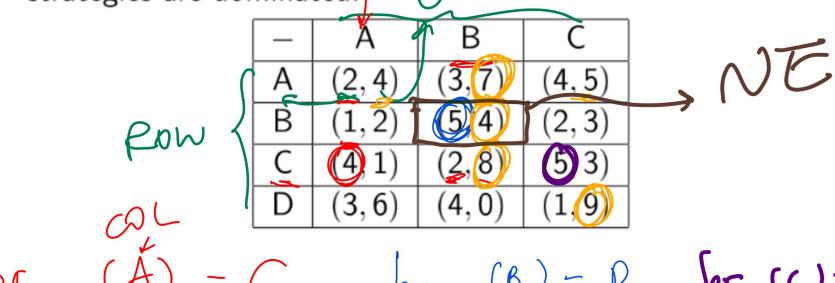
opponents' actions.
$$br_{MAX}(s_{MIN}) = \arg\max_{s \in S_{MAX}} c(s, s_{MIN})$$

$$br_{MIN}(s_{MAX}) = \arg\min_{s \in S_{MIN}} c(s_{MAX}, s)$$

Strictly Dominated and Dominant Strategy Definition

• An action s_i strictly dominates another $s_{i'}$ if it leads to a better state no matter what the opponents' actions are.

$$s_i >_{MAX} s_{i'}$$
 if $c(s_i, s) > c(s_{i'}, s)$ $\forall s \in S_{MIN}$
 $s_i >_{MIN} s_{i'}$ if $c(s, s_i) < c(s, s_{i'})$ $\forall s \in S_{MAX}$


- The action $s_{i'}$ is called strictly dominated.
- An action that strictly dominates all other actions is called strictly dominant.

Nash Equilibrium Definition

 A Nash equilibrium is a state in which all actions are best responses.

Dominated Strategy Example 1

- Fall 2005 Final Q6
- Both players are MAX players. What are the dominated strategies for the ROW player? Choose E if none of the strategies are dominated.

cor(A) = B

Dominated Strategy Example 2 Quiz

Fall 2005 Final Q6

 Both players are MAX players. What are the dominated strategies for the COLUMN player? Choose E if none of the strategies are dominated.

TESDS В Α В

Rationalitable set
(B.B)=3 (5,4)

Nash Equilibrium Occool Nash Equilibrium Sociol Nash Equilibrium Example Ac den by B

Fall 2005 Final Q5, Fall 2006 Final Q4

Find the value of the Nash equilibrium of the following

zero-sum game. MIN Ш • A: -7, B: 9, C: -3, D: 1, E: -4

Public Good Game

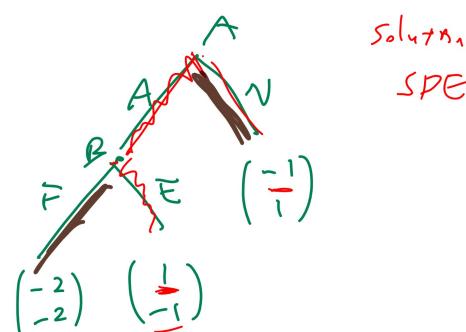
Discussion

- You received one free point for this question and you have two choices.
- A: Donate the point.
- B: Keep the point.
- Your final grade is the points you keep plus twice the average donation.

Non-credible Threat Example 1 Quiz

 Country A can choose to Attack or Not attack country B. If country A chooses to Attack, country B can choose to Fight back or Escape. The costs are the largest for both countries if they fight, but otherwise, A prefers attacking (and B escaping) and B prefers A not attacking. What are the Nash equilibria?

A: (A, F)

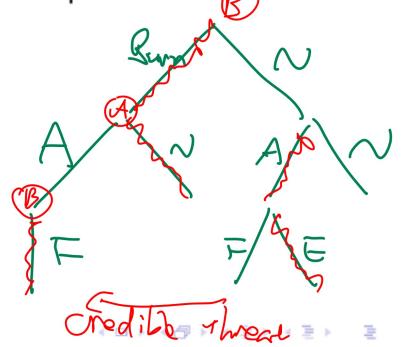

B: (A, E)

• C: (N, F)

D: (N, E)

• E: (N)

(日) (日) (日) (日)


Non-credible Threat Example 1 Derivation Quiz

Mormal form

$$A \rightarrow 2 \rightarrow 2 \rightarrow 0 \rightarrow 0$$
 $A \rightarrow 2 \rightarrow 2 \rightarrow 0 \rightarrow 0$
 $A \rightarrow 2 \rightarrow 2 \rightarrow 0 \rightarrow 0$
 $A \rightarrow 2 \rightarrow 2 \rightarrow 0 \rightarrow 0$
 $A \rightarrow 2 \rightarrow 2 \rightarrow 0 \rightarrow 0$
 $A \rightarrow 2 \rightarrow 2 \rightarrow 0 \rightarrow 0$
 $A \rightarrow 2 \rightarrow 2 \rightarrow 0 \rightarrow 0$
 $A \rightarrow 2 \rightarrow 2 \rightarrow 0 \rightarrow 0$
 $A \rightarrow 2 \rightarrow 2 \rightarrow 0 \rightarrow 0$
 $A \rightarrow 2 \rightarrow 2 \rightarrow 0 \rightarrow 0$
 $A \rightarrow 2 \rightarrow 2 \rightarrow 0 \rightarrow 0$
 $A \rightarrow 2 \rightarrow 2 \rightarrow 0 \rightarrow 0$
 $A \rightarrow 2 \rightarrow 2 \rightarrow 0 \rightarrow 0$
 $A \rightarrow 2 \rightarrow 2 \rightarrow 0 \rightarrow 0$
 $A \rightarrow 2 \rightarrow 2 \rightarrow 0 \rightarrow 0$
 $A \rightarrow 2 \rightarrow 2 \rightarrow 0 \rightarrow 0$
 $A \rightarrow 2 \rightarrow 2 \rightarrow 0 \rightarrow 0$
 $A \rightarrow 2 \rightarrow 2 \rightarrow 0$
 $A \rightarrow 2$

Non-credible Threat Example 2 Quiz

 What if country B can burn the bridge at the beginning of the game so that it cannot choose to escape?

Mixed Strategy Nash Equilibrium Definition

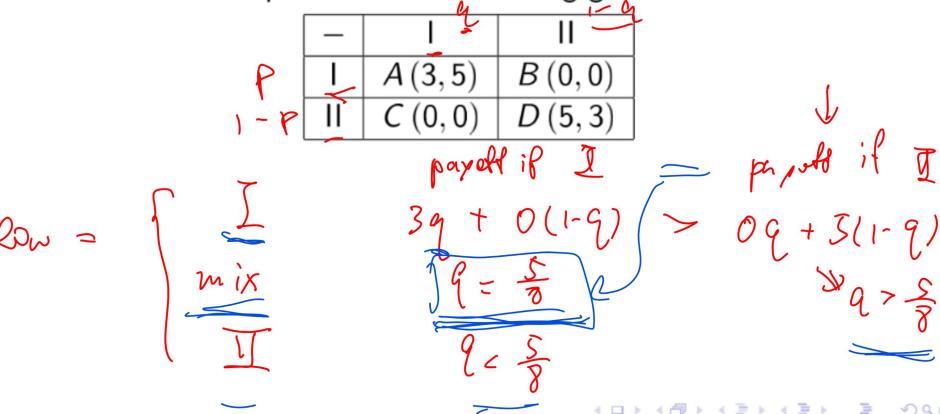
- A mixed strategy is a strategy in which a player randomizes between multiple actions.
- A pure strategy is a strategy in which all actions are played with probabilities either 0 or 1.
- A mixed strategy Nash equilibrium is a Nash equilibrium for the game in which mixed strategies are allowed.

Battle of the Sexes Example

Discussion

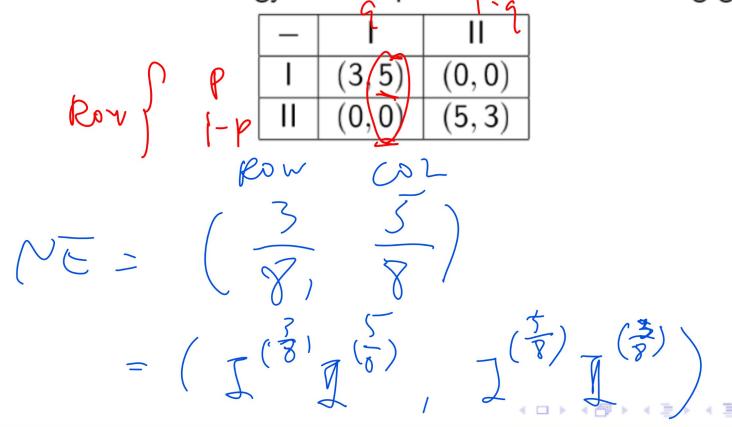
 Battle of the Sexes (BoS, also called Bach or Stravinsky) is a game that models coordination in which two players have different preferences in which alternative to coordinate on.

Ro	wes
14	

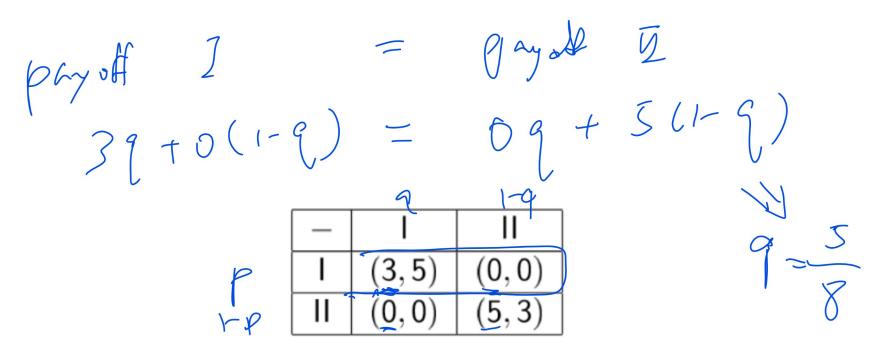

_	Bach	Stravinsky
Bach	$A(\underline{x}, y)$	B(0,0)
Stravinsky	C(0,0)	$D(\underline{y}, \times)$

In het

Battle of the Sexes Example 1 Quiz


• Find all Nash equilibria of the following game.

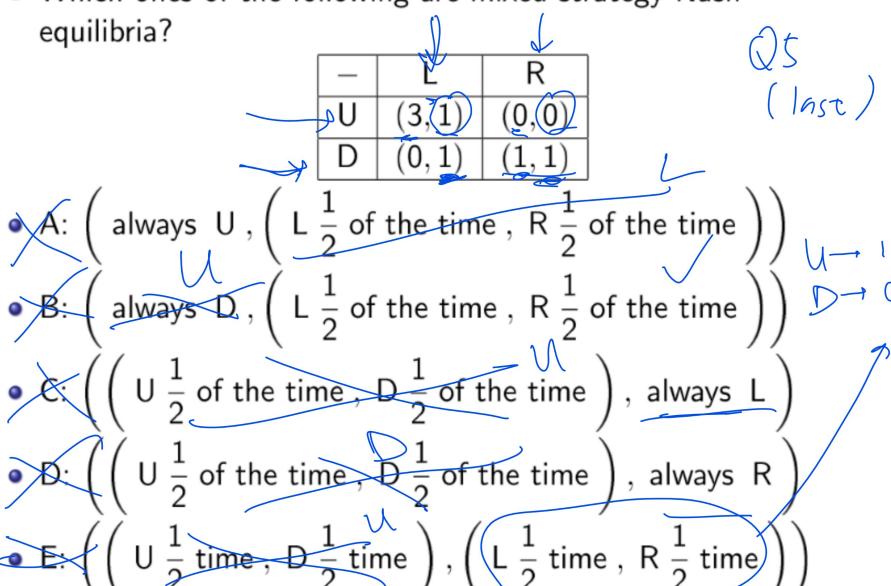
Battle of the Sexes Example 1 Derivation 1


$$COC = \begin{cases} I & SP + O(1-p) | SOp + 3(1-p) \\ P = \frac{3}{8} \\ P = \frac{3}{8} \end{cases}$$

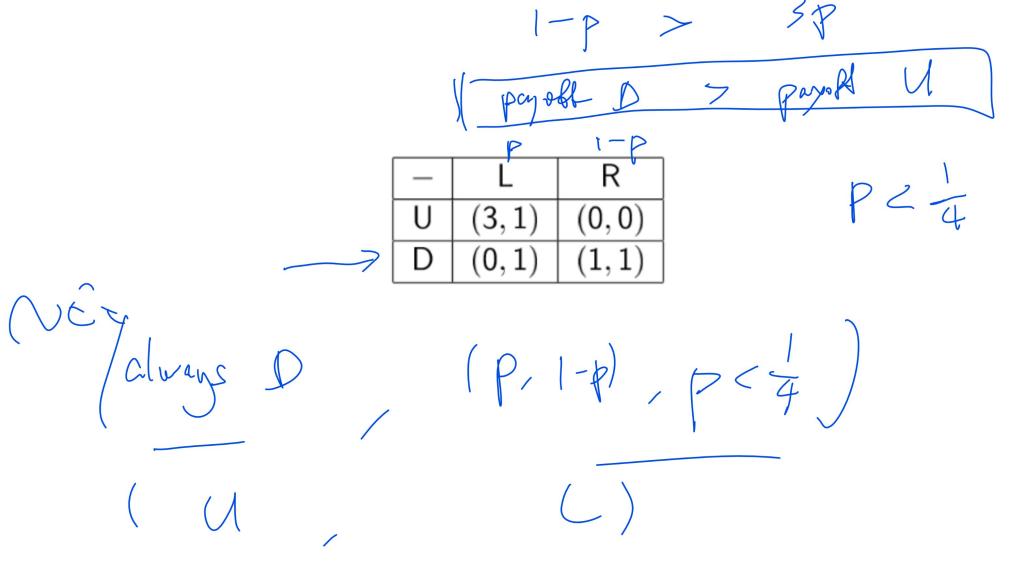
Find all mixed strategy Nash equilibria of the following game.

Battle of the Sexes Example 1 Derivation 2

Quiz



F 3


Mixed Strategy Example 1

Quiz

Which ones of the following are mixed strategy Nash

Mixed Strategy Example 1 Derivation Quiz

Nash Theorem

Definition

- Every finite game has a Nash equilibrium.
- The Nash equilibria are fixed points of the best response functions.

Fixed Point Nash Equilibrium

Algorithm

- Input: the payoff table $c(s_i, s_j)$ for $s_i \in S_{MAX}, s_j \in S_{MIN}$.
- Output: the Nash equilibria.
- Start with random state $s = (s_{MAX}, s_{MIN})$.
- Update the state by computing the best response of one of the players.

either
$$s' = (br_{MAX}(s_{MIN}), br_{MIN}(br_{MAX}(s_{MIN})))$$

or $s' = (br_{MAX}(br_{MIN}(s_{MAX})), br_{MIN}(s_{MAX}))$

• Stop when s' = s.