CS540 Introduction to Artificial Intelligence Lecture 20

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

August 3, 2020

Guess Average Game

Motivation

MIZQ9?

• Write down an integer between 0 and 100 that is the closest to two thirds (2/3) of the average of everyone's (including yours) integers.

JESOS O. - - 65 66 limpossible

O. - - 4 45 66

O he best response.

Coldinations

Rationalizability

Motivation

- An action is 1-rationalizable if it is the best response to some action.
- An action is 2-rationalizable if it is the best response to some 1-rationalizable action.
- An action is 3-rationalizable if it is the best response to some 2-rationalizable action.
- An action is rationalizable if it is ∞ -rationalizable.

Best Response

Definition

 An action is a best response if it is optimal for the player given the opponents' actions. e payoff / vohe

$$br_{MAX}(s_{MIN}) = arg \max_{s \in S_{MAX}} \underline{c(s, s_{MIN})}$$

$$br_{MAX}(s_{MIN}) = \arg\max_{s \in S_{MAX}} \underline{c(s, s_{MIN})}$$
 $br_{MIN}(s_{MAX}) = \arg\min_{s \in S_{MIN}} \underline{c(s_{MAX}, s)}$
 $s \in S_{MIN}$

Strictly Dominated and Dominant Strategy Definition

 An action s_i strictly dominates another s_{i'} if it leads to a better state no matter what the opponents' actions are.

$$s_i >_{MAX} s_{i'} \text{ if } c\left(s_i, s\right) > c\left(s_{i'}, s\right) \forall s \in S_{MIN}$$

 $s_i >_{MIN} s_{i'} \text{ if } c\left(s, s_i\right) < c\left(s, s_{i'}\right) \forall s \in S_{MAX}$

- The action $s_{i'}$ is called strictly dominated.
- An action that strictly dominates all other actions is called strictly dominant.

Nash Equilibrium Definition

 A Nash equilibrium is a state in which all actions are best responses.

Dominated Strategy Example 1

Quiz

he of J

Fall 2005 Final Q6

 Both players are MAX players. What are the dominated strategies for the ROW player? Choose E if none of the

strategies are dominated.

B>AL

Ro W

afer Dis

B > C

				N		
_		4	[3	4	
A	(2/	4	(3	7	4	E
В	(1)	2)	(5	4)	12	3)
С	(4,	1)	(2	8)	(5)	3
			4	1000		9
	1	٨				

for col no months what now is players

H 00/

7 MW

D < B

Dominated Strategy Example 2

Fall 2005 Final Q6

Nach Egurhbarm

 Both players are MAX players. What are the dominated strategies for the COLUMN player? Choose E if none of the strategies are dominated.

			od.
_	Α	В	С
Α	(2, 4)	(3,7)	(4, 5)
В	(1,2)	(G.(A))	(2, 3)
С	4 1)	(2,8)	(5) 3)
D	(3, 6)	(4, 0)	(1,9)

bra (D)=(bra

brown (C) = C & Brown

(b,B)

murhal

best
response

-) Nash equibilmin

Nash Equilibrium Example 1

27

Quiz

Find the value of the Nash equilibrium of the following

zero-sum game.

		. ,		
_	I	Ш	Ш	
I	-4	-7	-3	
Ш	9	1	7	
	-6	-1	5	
	_	4		/

MIN

• A: -7 , B: 9 , C: -3 , D: 1, E: -4

MAX

Nash Equilibrium Example 2

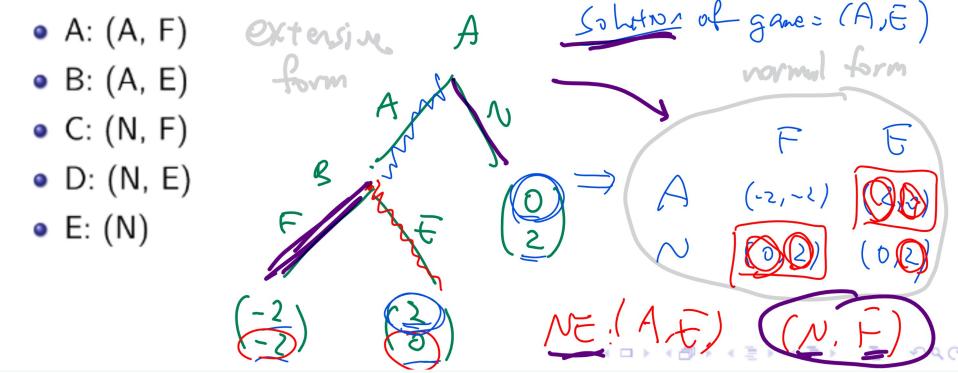
Quiz

Find the value (of MAX player) of the Nash equilibrium of the

following zero-sum game.

_		Ш	Ш
Ι	(-4, 4)	(-7(7)	(-3, 3)
Ш	(9, -9)		(7, -7)
Ш	(-6,6)	(-1,1)	(5, -5)

• A: -7 , B: 9 , C: -3 , D: 1, E: -4


Public Good Game

Discussion

- You received one free point for this question and you have two choices.
- A: Donate the point.
- B: Keep the point.
- Your final grade is the points you keep plus twice the average donation.

Non-credible Threat Example 1

 Country A can choose to Attack or Not attack country B. If country A chooses to Attack, country B can choose to Fight back or Escape. The costs are the largest for both countries if they fight, but otherwise, A prefers attacking (and B escaping) and B prefers A not attacking. What are the Nash equilibria?

Non-credible Threat Example 1 Derivation

extensive form

Quiz

normal form

SimuHaneous

more

A B

4

B

Non-credible Threat Example 2

 What if country B can burn the bridge at the beginning of the game so that it cannot choose to escape?

credible threat

A the F

Sohner

NE

Mixed Strategy Nash Equilibrium Definition

- A mixed strategy is a strategy in which a player randomizes between multiple actions.
- A pure strategy is a strategy in which all actions are played with probabilities either 0 or 1.
- A mixed strategy Nash equilibrium is a Nash equilibrium for the game in which mixed strategies are allowed.

Battle of the Sexes Example

Discussion

 Battle of the Sexes (BoS, also called Bach or Stravinsky) is a game that models coordination in which two players have different preferences in which alternative to coordinate on.

Romes

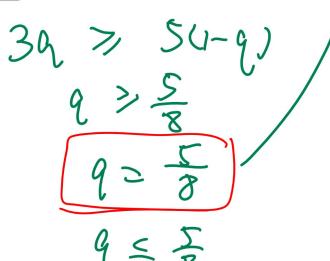
- <	Bach	Stravinsky
Bach	A (x, y)	B(0,0)
Stravinsky	C(0,0)	D (y, x)

Battle of the Sexes Example 1

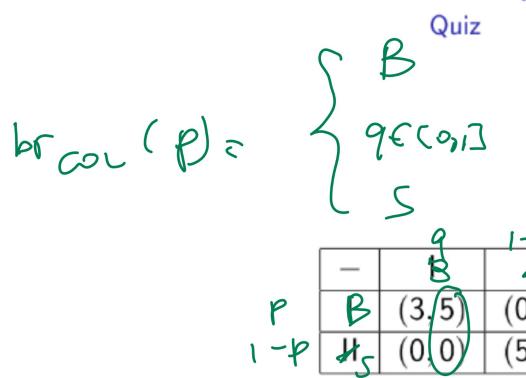
• Find all Nash equilibria of the following game.

_	1	П
I	A (3)(5)	B(0,0)
Ш	C(0,0)	D (5,3)

pune stretgy.


Battle of the Sexes Example 1 Derivation 1

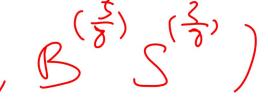
Quiz


for row player

Find all mixed strategy Nash equilibria of the following game.

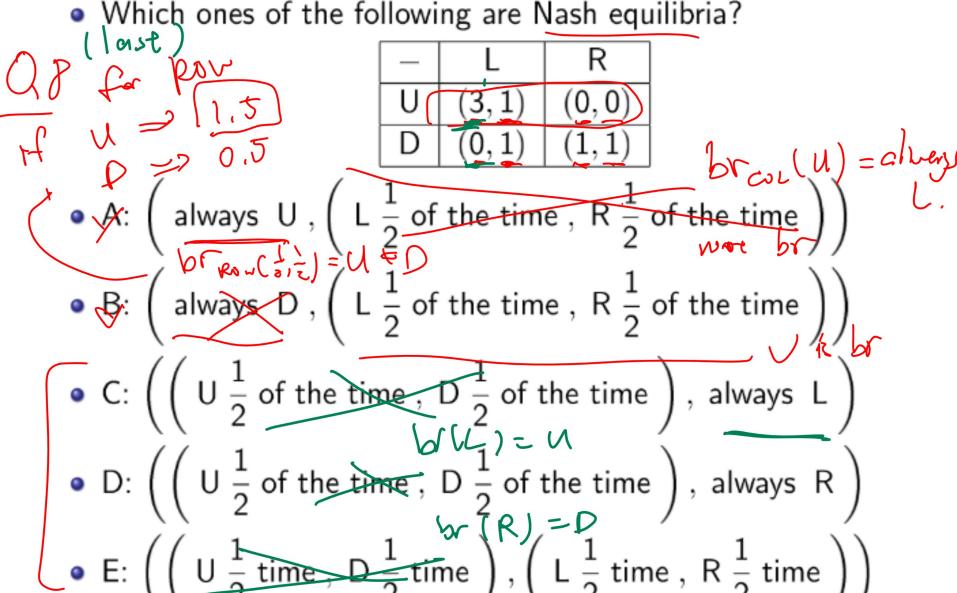
$$\begin{array}{c|cccc} - & B & M & S \\ \hline B & (3,5) & (0,0) \\ \hline M & (0,0) & (5,3) \\ \hline \end{array}$$

Battle of the Sexes Example 1 Derivation 2

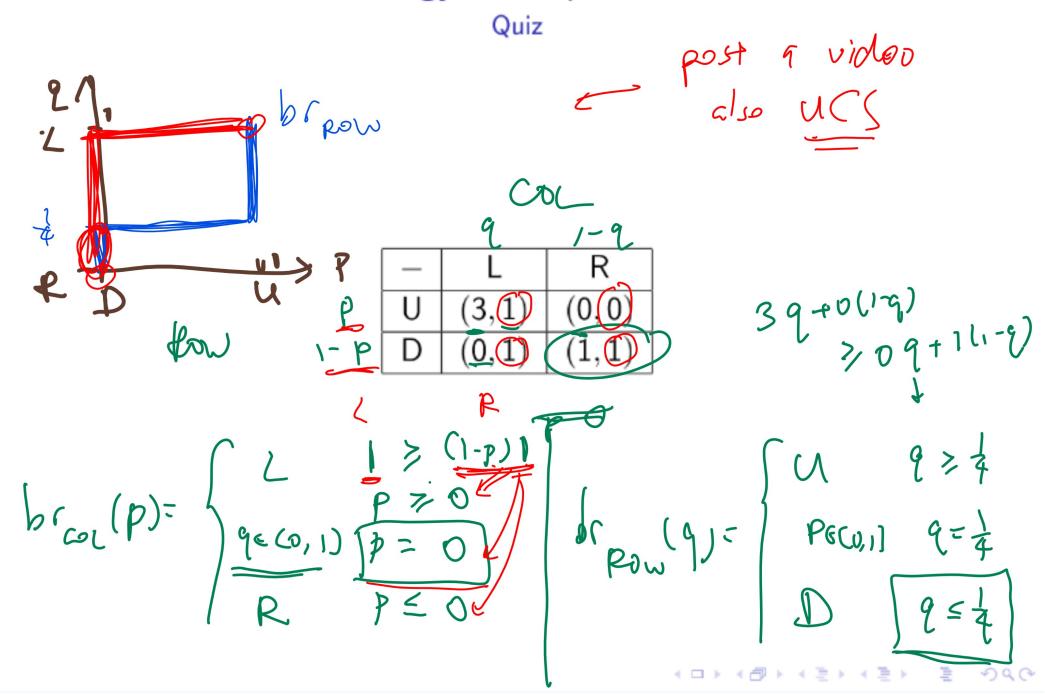

Sp	> 3(1-p)
	P > 3
	Pr 3
	P = 3

for Gr

posself from S 0.p + 3 Chp)


mixed NEz

$$\left(\begin{array}{c} \mathbb{S}^{\left(\frac{5}{8}\right)} \\ \mathbb{S}^{\left(\frac{5}{8}\right)} \end{array}\right)$$



Mixed Strategy Example 1

Quiz

Mixed Strategy Example 1 Derivation

Nash Theorem

- Every finite game has a Nash equilibrium.
- The Nash equilibria are fixed points of the best response functions.

$$P4$$
:

 $\frac{\chi_{i}-\min in d_{im} i}{\max -\min in d_{im} i}$

Fixed Point Nash Equilibrium

Algorithm

- Input: the payoff table $c(s_i, s_j)$ for $s_i \in S_{MAX}, s_j \in S_{MIN}$.
- Output: the Nash equilibria.
- Start with random state $s = (s_{MAX}, s_{MIN})$.
- Update the state by computing the best response of one of the players.

either
$$s' = (br_{MAX}(s_{MIN}), br_{MIN}(br_{MAX}(s_{MIN})))$$

or $s' = (br_{MAX}(br_{MIN}(s_{MAX})), br_{MIN}(s_{MAX}))$

• Stop when s' = s.