CS540 Introduction to Artificial Intelligence Lecture 20

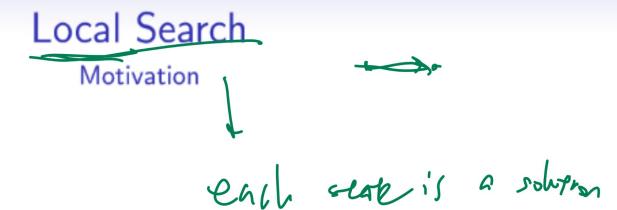
Young Wu
Based on lecture slides by Jerry Zhu and Yingyu Liang

July 29, 2021

Final Exam Practice

 M15 and M16 are posted (auto-grading may not work and missing Q11 to Q13, from the coordination).

Dame


Remind Me to Start Recording

 The messages you send in chat will be recorded: you can change your Zoom name now before I start recording.

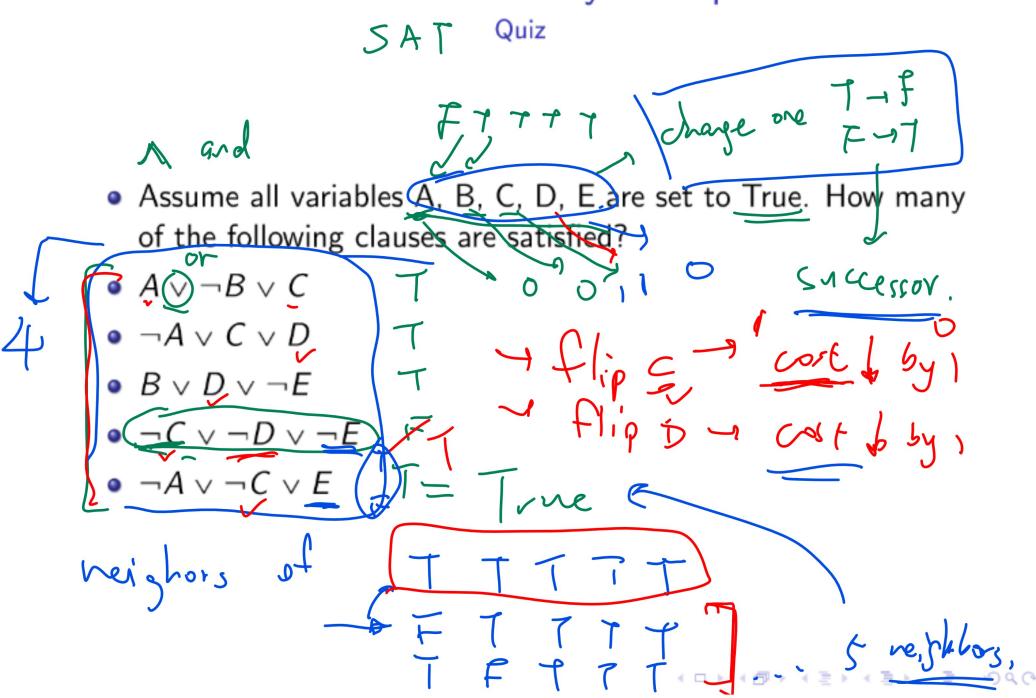
Traveling Salesperson Example

Motivation

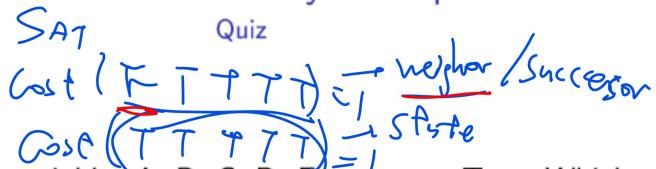
- Local search is about searching through a state space by iteratively improving the cost to find an optimal or near-optimal state.
- The successor states are called the neighbors (sometimes move set).
- The assumption is that similar (nearby) solutions have similar costs.

Hill Climbing (Valley Finding)

Description



- Start at a random state.
- Move to the best neighbor state (one of the/successors).
- Stop when all neighbors are worse than the current state.
- The idea is similar to gradient descent.



Boolean Satisfiability Example 1

Boolean Satisfiability Example 2

• Assume all variables A, B, C, D, E are set to True. Which one of the variables should be changed to False to maximize the number of clauses satisfied?

$$\bullet \neg A \lor C \lor D$$

$$\bullet \neg A \lor \neg C \lor E$$

Cost = # F clauses (not satisfied)

Hill Climbing Algorithm

- Input: state space S and cost function f.
- Output: $s^* \in S$ that minimizes f(s).
- Start at a random state s₀,
- At iteration t, find the neighbor that minimizes f.

$$s_{t+1} = \arg\min_{s \in s'(s_t)} f(s)$$

Stop when none of the neighbors have a lower cost.

stop if
$$f(s_{t+1}) \leq f(s_t)$$

Random Restarts

Discussion

 A simple modification is picking random initial states multiple times and finding the best among the local minima.

First Choice Hill Climbing

Discussion

- If there are too many neighbors, randomly generate neighbors until a better neighbor is found.
- This method is called first choice hill climbing.

Simulated Annealing

Description

- Each time, a random neighbor is generated.
- If the neighbor has a lower cost, move to the neighbor.
- If the neighbor has a higher cost, move to the neighbor with a small probability. >> escape local minimum
- Stop until bored
- It is a version of Metropolis-Hastings Algorithm.

Acceptance Probability

Definition

- The probability of moving to a state with a higher cost should be small.
- **1** Constant: p = 0.1
- ② Decreases with time: $p = \frac{1}{t}$
- Oecreases with time and as the energy difference increases:

$$p = \exp\left(-\frac{|f(s') - f(s)|}{\text{Temp }(t)}\right)$$

 The algorithm corresponding to the third idea is called simulated annealing. Temp should be a decreasing in time (iteration number).

Temperature

Definition

 Temp represents temperature which decreases over time. For example, the temperature can change arithmetically or geometrically.

Temp
$$(t+1) = \max\{ \text{ Temp } (t) - 1, 1 \}$$
, Temp $(0) = \text{ large}$
Temp $(t+1) = 0.9 \text{ Temp } (t)$, Temp $(0) = \text{ large}$

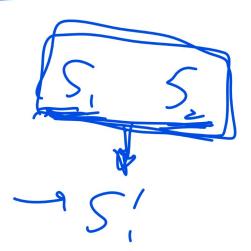
- High temperature: almost always accept any s'.
- Low temperature: first choice hill climbing.

Simulated Annealing Example 1 Quiz

• Suppose we are minimizing and f(s) = 6, f(t) = 5, T = 4. What is the probability we move from s to t in the next step? What is the probability we move from t to s in the next step?

The probability we note that $\frac{1+(s)-+(e_1)}{2}$

5-re p=) t-15 p=e==1


Simulated Annealing Example 2 Quiz

- Suppose we are minimizing and
 f(s) = 0, f(t) = log(5), T = 1. What is the probability we move from s to t.
- A: 0 • B: $\frac{1}{5}$
- C: $\frac{4}{5}$
- D: 1
- E: 5

Genetic Algorithm Description

- Start with a fixed population of initial states.
- Find the successors by:
- Cross over. C

Reproduction Probability

Definition

• Each state in the population has probability of reproduction proportional to the fitness. Fitness is the opposite of the cost: higher cost means lower fitness. Use F to denote the fitness function, for example, $F(s) = \frac{1}{f(s)}$ is a valid fitness function.

$$\frac{p_{i}}{\sum_{j=1}^{N} F(s_{j})}, i = 1, 2, ..., N$$

 A pair of states are selected according to the reproduction probabilities (using CDF inversion).

Cross Over

Definition

- The states need to be encoded by strings.
- Cross over means swapping substrings.
- For example, the children of 10101 and 0(010) could be the same as the parents or one of the following variations.

(11010,00101),(10010,01101)

(10110, 01001), (10100, 01011)

Mutation Definition

escape logal min

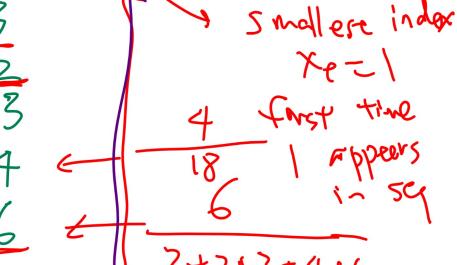

- The states need to be encoded by strings.
- Mutation means randomly updating substrings. Each character is changed with small probability q, called the mutation rate.
- For example, the mutated state from 000 could stay the same or be one of the following.

one of 001,010,100, with probability $q(1-q)^2$

- one of 011, 101, 110, with probability $q^2 (1-q)$
- \longrightarrow and 111, with probability q^3

Fitness Example 1

Quiz



• Which one of the following states have the highest reproduction probability? The fitness function is $f(x) = \min\{t \in \{1, 2, 3, 4, 5, 6\} : x_t = 1\}$ with $x_6 = 1$

- B: (0,1,0,0,1)
- ¢: (0,0,1,1,0)
- \bullet/D : (0,0,0,1,0)
- E: (0,0,0,0,0)

Fitness Example 2 2 \(\frac{1}{\lambda} \)

Quiz

• Which one of the following states have the highest reproduction probability? The fitness function is

$$f(x) = \max\{t \in \{0, 1, 2, 3, 4, 5\} : x_t = 1\} \text{ with } x_0 = 1.$$

- A: (0,0,1,0,0)
- F(A) = 3
- B: (0,1,0,0,1)

5

• C: (0,0,1,1,0)

4

D: (0,0,0,1,0)

4

 \leftarrow E: (0,0,0,0,0)

0

Genetic Algorithm Performance

- Use hill-climbing first.
- State design is the most important.
- In theory, cross over is much more efficient than mutation.