### CS540 Introduction to Artificial Intelligence Lecture 21

Young Wu
Based on lecture slides by Jerry Zhu and Yingyu Liang

August 5, 2019

#### Monte Carlo Tree Search

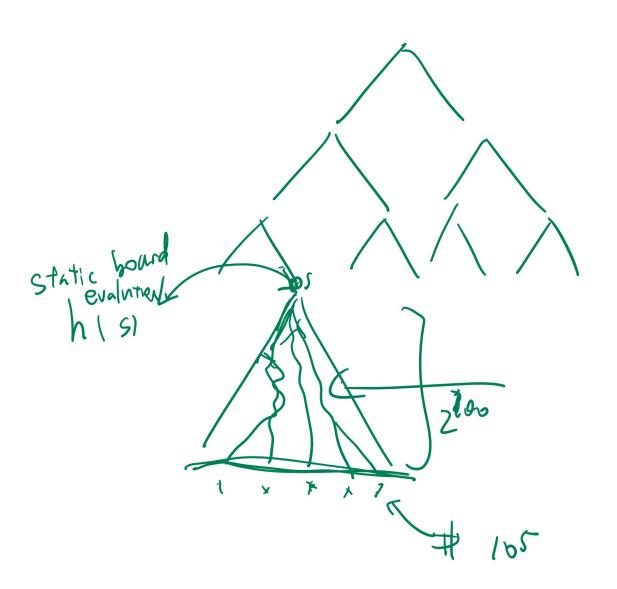
Discussion

Lecture 19

- Simulate random games by selecting random moves for both players.
- Exploitation by keeping track of average win rate for each successor from previous searches and picking the successors that lead to more wins.
- Exploration by allowing random choices of unvisited successors.

#### Monte Carlo Tree Search Diagram

Discussion



#### **Upper Confidence Bound**

Discussion

 Combine exploitation and exploration by picking sucessors using upper confidence bound for tree.

$$\frac{w_s}{n_s} + c\sqrt{\frac{\log t}{n_s}}$$

- w<sub>s</sub> is the number of wins after successor s, and n<sub>s</sub> the number of simulations after successor s, and t is the total number of simulations.
- Similar to the UCB algorithm for MAB.

## Alpha GO Example Discussion

- MCTS with  $> 10^5$  playouts.
- Deep neural network to compute SBE.



Discussion

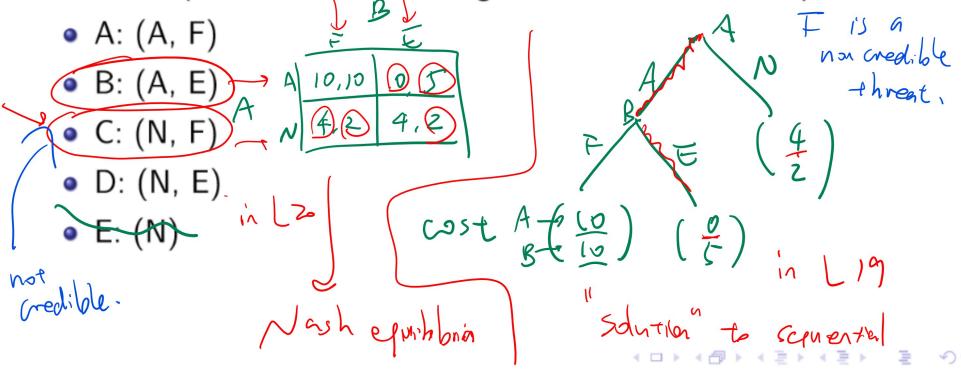


R y \_ \_ \_

- Sequential games can have normal form too, but the solution concept is different.
- Nash equilibria of the normal form may not be a solution of the original sequential form game.

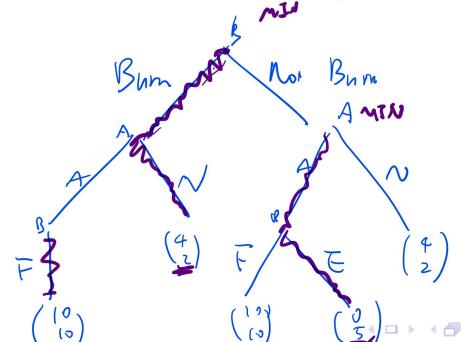
#### Non-credible Threat Example, Part I

 Country A can choose to Attack or Not attack country B. If country A chooses to Attack, country B can choose to Fight back or Escape. The costs are the largest for both countries if they fight, but otherwise, A prefers attacking (and B escaping) and B prefers A not attacking. What are the Nash equilibria?



# Non-credible Threat Example, Part II Quiz (Graded)

 What if country B can burn the bridge at the beginning of the game so that it cannot choose to escape?



#### Prisoner's Dilemma

#### Discussion

 A simultaneous move, non-zero-sum, and symmetric game is a prisoner's dilemma game if the Nash equilibrium state is strictly worse for both players than another state.

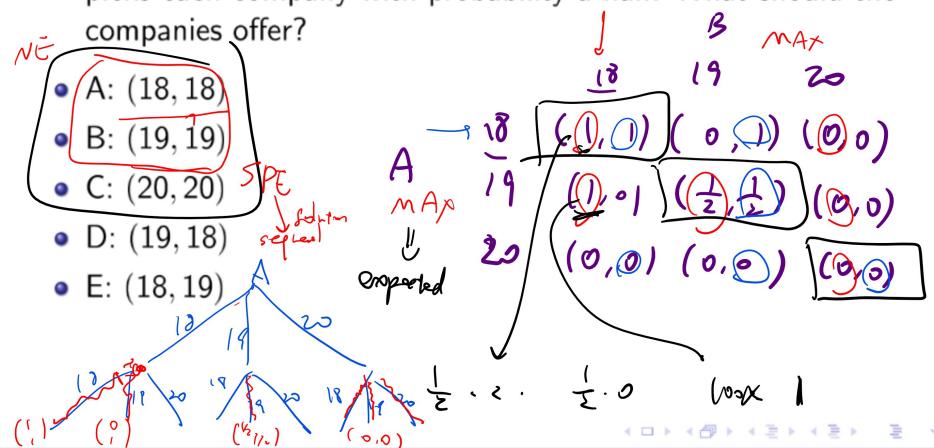
| _ | С      | D      |
|---|--------|--------|
| С | (x,x)  | (0,y)  |
| D | (y, 0) | (1, 1) |

C stands for Cooperate and D stands for Defect (not Confess and Deny). Both players are MAX players. The game is PD if y > x > 1. Here, (D, D) is the only Nash equilibrium and (C, C) is strictly better than (D, D) for both players.

#### Wage Competition, Version I

Quiz (Participation)

 Assume the productivity of the applicant is 20 dollars per hour, and in case of a tie in the offers, the applicant randomly picks each company with probability a half. What should the



#### Wage Competition, Version II

- Assume the productivity of the applicant is 20 dollars per hour, and in case of a tie in the offers, the applicant pick company 1. What should the companies offer?
- A: (18, 18)
- B: (19, 19)
- C: (20, 20)
- D: (19, 18)
- E: (18, 19)

#### Wage Competition, Version III

- Assume the productivity of the applicant is 20 dollars per hour, and in case of a tie in the offers, the applicant pick company 2. What should the companies offer?
- A: (18, 18)
- B: (19, 19)
- C: (20, 20)
- D: (19, 18)
- E: (18, 19)

# Median Voter Theorem, Part I Quiz (Participation)

 Voters are distributed according to density function f (x) on the one dimensional political spectrum x ∈ [0,1]. Each voter votes for the politician closer to his or her own position (randomly pick one in case of a tie). Two politicians choose 1 positions x<sub>1</sub> and x<sub>2</sub> trying the maximize the number of votes.

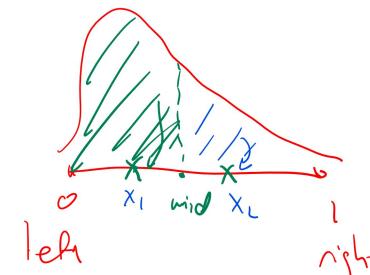
• A: Midpoint:  $\frac{1}{2}$ 

• B: Mean:  $\int_0^1 x f(x) dx$ 

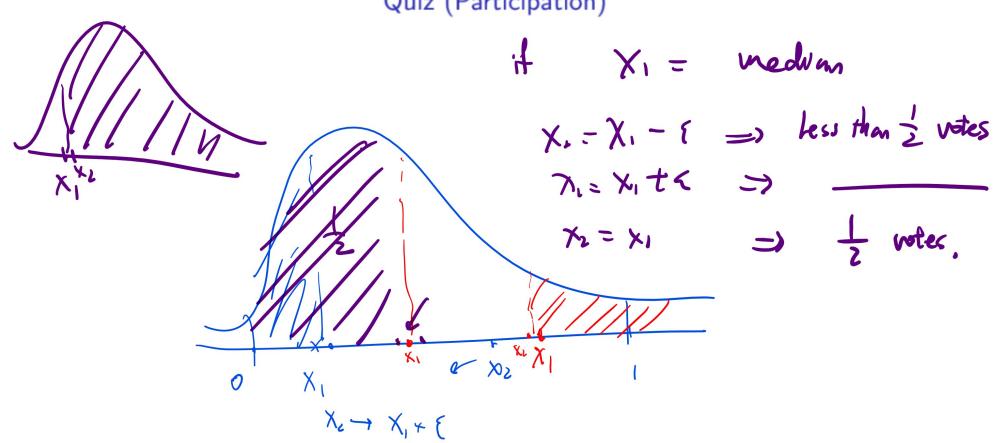
• C: Median:  $m: \int_0^m f(x) dx = \frac{1}{2}$ 

• D: Mode:  $\max_{x \in [0,1]} f(x)$ 

where is NE actions?



#### Median Voter Theorem, Part II



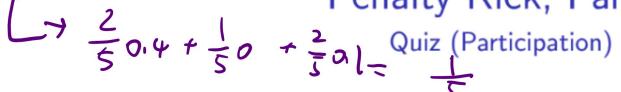
#### Penalty Kick, Part I

Quiz (Participation)

 The kicker (ROW) and the goalie (COL) choose L, C, R simultaneously. The following table is the estimated probability of scoring the goal given the actions. Kicker maximizes the probability and goalie minimizes the probability. Find all mixed strategy Nash.

| _ | L   | С   | R   |
|---|-----|-----|-----|
| L | 0.6 | 0.9 | 0.9 |
| С | (1) | 0.4 |     |
| R | 0.9 | 0.9 | 0.6 |

### Penalty Kick, Part II



|   | _ | L   | С   | R   |
|---|---|-----|-----|-----|
| , | L | 0.6 | 0.9 | 0.9 |
|   | С | 1   | 0.4 | 1   |
|   | R | 0.9 | 0.9 | 0.6 |

| Coly        | 2   | C   | R   |
|-------------|-----|-----|-----|
| COLY<br>S-L | 0.4 | 0.1 | 0,  |
| 3-C         | 0   | 0.6 | 0   |
| -5C<br>2R   | 0.1 | 0.1 | 0,4 |

• A: 
$$\left(\left(\frac{1}{3}L, \frac{1}{3}C, \frac{1}{3}R\right), \left(\frac{1}{3}L, \frac{1}{3}C, \frac{1}{3}R\right)\right)$$

B: 
$$\left(\left(\frac{2}{5}L, \frac{1}{5}C, \frac{2}{5}R\right), \left(\left(\frac{1}{3}L, \frac{1}{3}C, \frac{1}{3}R\right)\right)\right)$$

C: 
$$\left(\left(\frac{1}{3}L, \frac{1}{3}C, \frac{1}{3}R\right), \left(\frac{2}{5}L, \frac{1}{5}C, \frac{2}{5}R\right)\right)$$

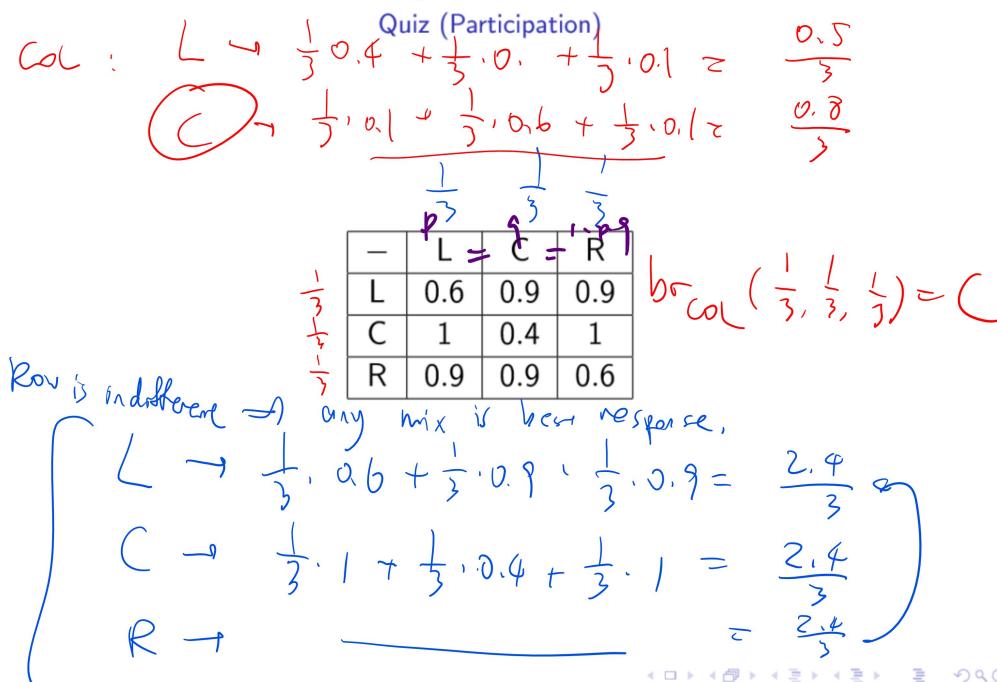
D: 
$$\left(\left(\frac{2}{5}L, \frac{1}{5}C, \frac{2}{5}R\right), \left(\frac{2}{5}L, \frac{1}{5}C, \frac{2}{5}R\right)\right)$$





#### 

#### Penalty Kick, Part III



#### Volunteer's Dilemma, Part I

Quiz (Participation)

• On March 13, 1964, Kitty Genovese was stabbed outside the apartment building. There are 38 witnesses, and no one reported. Suppose the benefit of reported crime is 1 and the cost of reporting is c < 1. What is the probability that no one reported?</p>

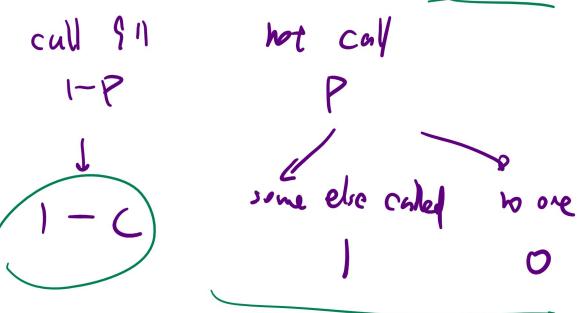
• A: c

B: c<sup>1/37</sup>

• C:  $c^{38/37}$ 

• D:  $c^{1/38}$ 

F. c37/38



#### Volunteer's Dilemma, Part II

$$\frac{|cal|}{|ca|} \quad \text{hot} \quad P$$

$$\frac{|cal|}{|ca|} \quad P$$

#### Public Good Game, Part I

- You received one free point for this question and you have two choices.
- A: Donate the point.
- B: Keep the point.
- Your final grade is the points you keep plus twice the average donation.

#### Public Good Game, Part II

#### Split or Steal Game

- Two players choose whether to split or steal a large sum of money, say x dollars. If both choose to split, each player gets \[ \frac{x}{2} \]. If both choose to steal, each player gets 0. If one player chooses to steal, that player gets x. What is a pure strategy Nash equilibrium?
- A: (Split, Split)
- B: (Steal, Split)
- C: (Split, Steal)
- D: (Steal, Steal)

#### Rubinstein Bargaining Game, Part I

Quiz (Participation)

• There is a cake of size 1. Two kids bargain how to divide the cake for N rounds. The size of the cake is reduced to  $\delta^t$  after t rounds of bargaining. In round t, if t is odd, kid 1 proposes the division, and kid 2 decides whether to accept or reject, and if t is even, kid 2 proposes the division, and kid 1 decides whether to accept or reject. The game ends when a proposal is accepted, and both kids get 0 if all proposals are rejected. How should the kid 1 propose in round 1? Assume kids accept when indifferent.

#### Rubinstein Bargaining Game, Part II

- How should the kid 1 propose in round 1 if N = 2? Assume kids accept when indifferent.
- A: (1,0)
- B:  $(1 \delta, \delta)$
- C:  $(1 \delta + \delta^2, \delta \delta^2)$
- D:  $(1 \delta + \delta^2 \delta^3, \delta \delta^2 + \delta^3)$
- E:  $\left(\frac{1}{1-\delta}, \frac{\delta}{1-\delta}\right)$

### Rubinstein Bargaining Game, Part III

- How should the kid 1 propose in round 1 if N = 4? Assume kids accept when indifferent.
- A: (1,0)
- B:  $(1 \delta, \delta)$
- C:  $(1 \delta + \delta^2, \delta \delta^2)$
- D:  $(1 \delta + \delta^2 \delta^3, \delta \delta^2 + \delta^3)$
- E:  $\left(\frac{1}{1-\delta}, \frac{\delta}{1-\delta}\right)$

### Rubinstein Bargaining Game, Part IV

- How should the kid 1 propose in round 1 if N = ∞? Assume kids accept when indifferent.
- A: (1,0)
- B:  $(1 \delta, \delta)$
- C:  $(1 \delta + \delta^2, \delta \delta^2)$
- D:  $(1 \delta + \delta^2 \delta^3, \delta \delta^2 + \delta^3)$
- E:  $\left(\frac{1}{1-\delta}, \frac{\delta}{1-\delta}\right)$

### Rubinstein Bargaining Game, Part V

#### First Price Auction, Version I

- If the value of an object to you is v ∈ [0,1], how much should you bid for it in a first-price sealed-bid auction: simultaneous move, highest bidder gets the object and pays the highest bid? Suppose there are n bidders with values uniformly distributed in [0,1].
- A: v
- B: <sup>1</sup>/<sub>2</sub>ν
- C:  $\frac{1}{n}v$
- D:  $\frac{n-1}{n}v$

#### First Price Auction, Version II

#### Second Price Auction, Version I

- If the value of an object to you is v ∈ [0,1], how much should you bid for it in a second-price sealed-bid auction: simultaneous move, highest bidder gets the object and pays the second-highest bid? Suppose there are n bidders with values uniformly distributed in [0,1].
- A: v
- B:  $\frac{1}{2}v$
- C:  $\frac{1}{n}v$
- D:  $\frac{n-1}{n}v$

## Second Price Auction, Version II