CS540 Introduction to Artificial Intelligence Lecture 21

Young Wu
Based on lecture slides by Jerry Zhu and Yingyu Liang

August 8, 2019

Normal Form of Sequential Games

Discussion

- Sequential games can have normal form too, but the solution concept is different.
- Nash equilibria of the normal form may not be a solution of the original sequential form game.

Non-credible Threat Example, Part I Quiz (Graded)

 Country A can choose to Attack or Not attack country B. If country A chooses to Attack, country B can choose to Fight back or Escape. The costs are the largest for both countries if they fight, but otherwise, A prefers attacking (and B escaping) and B prefers A not attacking. What are the Nash equilibria?

Non-credible Threat Example, Part II Quiz (Graded)

• What if country B can burn the bridge at the beginning of the game so that it cannot choose to escape?

Wage Competition, Version I

Quiz (Participation)

Assume the productivity of the applicant is 20 dollars per hour, and in case of a tie in the offers, the applicant randomly picks each company with probability a half. What should the

companies offer? (20, 20)• D: (19, 18)

• E: (18, 19)

Penalty Kick, Part I

Quiz (Participation)

 The kicker (ROW) and the goalie (COL) choose L, C, R simultaneously. The following table is the estimated probability of scoring the goal given the actions. Kicker maximizes the probability and goalie minimizes the probability.

Find all mixed strategy Nash.

d Strate	By Masil. With			
	_	L	С	R
MAX	L	0.6	0.9	0.9
	С		0.4	1
	R	0.9	(0.9)	0.6

he pune Nach.

Penalty Kick, Part II

- L' C; R; L 0.6 0.9 0.9 C 1 0.4 1	0,4 0,1 0,1 0 0.6 0
• A: $\left(\frac{1}{3}L, \frac{1}{3}e, \frac{1}{3}R\right)$, $\left(\frac{1}{3}L, \frac{1}{3}e, \frac{1}{3}R\right)$	4 then pour
• B: $\left(\left(\frac{2}{5}L, \frac{1}{5}C, \frac{2}{5}R\right), \left(\frac{1}{3}L, \frac{1}{3}C, \frac{1}{3}R\right)\right)$ • C: $\left(\left(\frac{1}{3}L, \frac{1}{3}C, \frac{1}{3}R\right), \left(\frac{2}{5}L, \frac{1}{5}C, \frac{2}{5}R\right)\right)$	$L \rightarrow \frac{1}{3}.0.6 + \frac{1}{3}.0.9$ $+ \frac{1}{3}0.9 = 0.8$ $C = \frac{1}{3}.1 + \frac{1}{3}.0.4$
VS D: $\left(\left(\frac{2}{5}L, \frac{1}{5}C, \frac{2}{5}R\right), \left(\frac{2}{5}L, \frac{1}{5}C, \frac{2}{5}R\right)\right)$	$R \Rightarrow 0.8$

More Examples

if COL 3,3,3, Row's best response is

Penalty Kick, Part III

Quiz (Participation)

IP Row = 1, 1, 1,

ANY mixed between L.C.R

$$Col$$
 \rightarrow $L \rightarrow \frac{1}{3}, 04 + \frac{1}{3}, 07 + \frac{1}{3}, 01 = 0.2$
 $C = \frac{1}{3}, 0, 1 + \frac{1}{3}, 0, 6 + \frac{1}{3}, 01 = \frac{0.2}{1}$
 $C = \frac{1}{3}, 0, 1 + \frac{1}{3}, 0, 6 + \frac{1}{3}, 0, 01 = 0.2$

 $\frac{2}{5}$ R 0.9 0.9 0.6

$$\begin{pmatrix} 0, 4 \\ 0, 6 \\ 0, 1 \end{pmatrix} \begin{pmatrix} 0, 1 \\ 0, 6 \\ 0, 1 \end{pmatrix} \begin{pmatrix} 0, 1 \\ 0, 6 \\ 0, 1 \end{pmatrix}$$

$$DC_{COL}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) = always play C$$

 $COL \rightarrow L = \frac{3}{5}0.4 + \frac{1}{5}0.1 = 0.2$ $C = \frac{3}{5}.0.1 + \frac{3}{5}0.1 = 0.2$

Volunteer's Dilemma, Part I

Quiz (Participation)

• On March 13, 1964, Kitty Genovese was stabbed outside the apartment building. There are 38 witnesses, and no one reported. Suppose the benefit of reported crime is 1 and the cost of reporting is c < 1. What is the probability that no one

reported?

 $\bullet \left(A : c^{\frac{38}{38}} \right) \delta$

B: c^{1/37}

C: c^{38/37}

D: $c^{1/38}$

• E: $c^{37/38}$

$$p^{37} \cdot 0 + (1-p^{37}) \cdot)$$

Volunteer's Dilemma, Part II

Public Good Game, Part I

- You received one free point for this question and you have two choices.
- A: Donate the point.
- B: Keep the point.
- Your final grade is the points you keep plus twice the average donation.

Public Good Game, Part II

Split or Steal Game

- Two players choose whether to split or steal a large sum of money, say x dollars. If both choose to split, each player gets \(\frac{x}{2}\). If both choose to steal, each player gets 0. If one player chooses to steal, that player gets x. What is a pure strategy Nash equilibrium?
- A: (Split, Split)
- B: (Steal, Split)
- C: (Split, Steal)
- D: (Steal, Steal)

Rubinstein Bargaining Game, Part I

Quiz (Participation)

• There is a cake of size 1. Two kids bargain how to divide the cake for N rounds. The size of the cake is reduced to δ^t after t rounds of bargaining. In round t, if t is odd, kid 1 proposes the division, and kid 2 decides whether to accept or reject, and if t is even, kid 2 proposes the division, and kid 1 decides whether to accept or reject. The game ends when a proposal is accepted, and both kids get 0 if all proposals are rejected. How should the kid 1 propose in round 1? Assume kids accept when indifferent.

Rubinstein Bargaining Game, Part II

- How should the kid 1 propose in round 1 if N = 2? Assume kids accept when indifferent.
- A: (1,0)
- B: $(1 \delta, \delta)$
- C: $(1 \delta + \delta^2, \delta \delta^2)$
- D: $(1 \delta + \delta^2 \delta^3, \delta \delta^2 + \delta^3)$
- E: $\left(\frac{1}{1-\delta}, \frac{\delta}{1-\delta}\right)$

Rubinstein Bargaining Game, Part III

- How should the kid 1 propose in round 1 if N = 4? Assume kids accept when indifferent.
- A: (1,0)
- B: $(1 \delta, \delta)$
- C: $(1 \delta + \delta^2, \delta \delta^2)$
- D: $(1 \delta + \delta^2 \delta^3, \delta \delta^2 + \delta^3)$
- E: $\left(\frac{1}{1-\delta}, \frac{\delta}{1-\delta}\right)$

Rubinstein Bargaining Game, Part IV

- How should the kid 1 propose in round 1 if N = ∞? Assume kids accept when indifferent.
- A: (1,0)
- B: $(1 \delta, \delta)$
- C: $(1 \delta + \delta^2, \delta \delta^2)$
- D: $(1 \delta + \delta^2 \delta^3, \delta \delta^2 + \delta^3)$
- E: $\left(\frac{1}{1-\delta}, \frac{\delta}{1-\delta}\right)$