CS540 Introduction to Artificial Intelligence Lecture 23

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

June 13, 2020

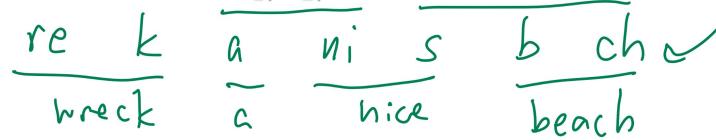
Special Bayesian Network for Sequences Motivation

- A sequence of features $X_1, X_2, ...$ can be modelled by a Markov Chain but they are not observable.
- A sequence of labels $Y_1, Y_2, ...$ depends only on the current hidden features and they are observable.
- This type of Bayesian Network is call a Hidden Markov Model.

HMM Applications Part 1

Motivation

- Weather prediction.
- Hidden states: $X_1, X_2, ...$ are weather that is not observable by a person staying at home (sunny, cloudy, rainy).
- Observable states: $Y_1, Y_2, ...$ are Badger Herald newspaper reports of the condition (dry, dryish, damp, soggy).
- Speech recognition.
- Hidden states: $X_1, X_2, ...$ are words.
- Observable states: $Y_1, Y_2, ...$ are acoustic features.



Some

HMM Applications Part 2

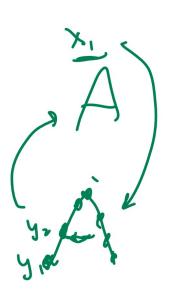
Motivation

- Stock or bond prediction.
- Hidden states: $X_1, X_2, ...$ are information about the compnay (profitability, risk measures).
- Observable states: $Y_1, Y_2, ...$ are stock or bond prices.
- Speech synthesis: Chatbox.
- Hidden states: X₁, X₂,... are context or part of speech.
 Observable states: Y₁, Y₂,... are words.

Other HMM Applications

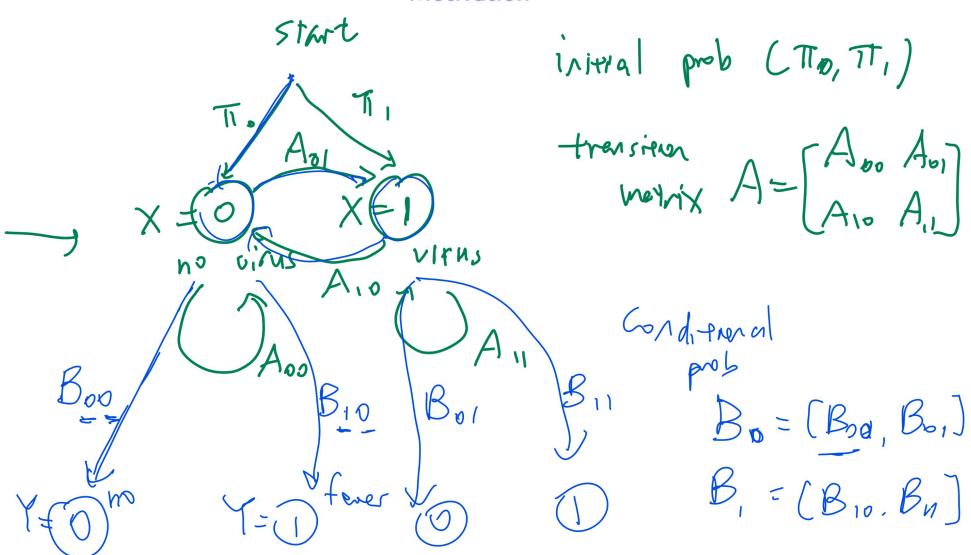
Motivation

- Machine translation.
- Handwritting recognition.
- Gene prediction.
- Traffic control.



Hidden Markov Model Diagram

Motivation



Transition and Likehood Matrices

Motivation

- An initial distribution vector and two state transition matrices are used to represent a hidden Markov model.
- Initial state vector: π .

$$\pi_i = \mathbb{P}\left\{X_1 = i\right\}, i \in \{1, 2, ..., |X|\}$$

State transition matrix: A.

$$A_{ij} = \mathbb{P}\left\{X_t = j | X_{t-1} = i\right\}, i, j \in \{1, 2, ..., | X | \}$$

Observation Likelihood matrix (or output probability distribution): B.

$$B_{ij} = \mathbb{P}\left\{Y_t = i | X_t = j\right\}, i \in \{1, 2, ..., |Y|, j \in \{1, 2, ..., |X|\}\right\}$$

Markov Property

Motivation

 The Markov property implies the following conditionally independence property.

$$\mathbb{P}\left\{\underbrace{x_{t}|x_{t-1},x_{t-2},...,x_{1}}_{\mathbb{P}\left\{y_{t}|x_{t},x_{t-1},...,x_{1}\right\}} = \mathbb{P}\left\{x_{t}|x_{t-1}\right\}$$

Evaluation and Training

Motivation

- There are three main tasks associated with a HMM.
- Evaluation problem: finding the probability of an observed sequence given an HMM: $y_1, y_2, ...$
- ② Decoding problem: finding the most probable hidden sequence given the observed sequence $x_1, x_2, ...$
- Straining problem: finding the most probable HMM given an observed sequence: $\pi, A, B, ...$

observed sequence: $\pi, A, B, ...$ Training HMM

Expectation Maximization Algorithm

Description

- Start with a random guess of π , A, B.
- Compute the forward probabilities: the joint probability of a observed sequence and its hidden state.
- Compute the backward probabilities: the probability of a observed sequence given its hidden state.
- Update the model π , A, B using Bayes rule.
- Repeat until convergence.
- Sometimes, it is called the Baum-Welch Algorithm.

Evaluation Problem

Definition

• The task is to find the probability $\mathbb{P}\{y_1,y_2,...,y_T^{\sigma_i}|\pi,A,B\}$.

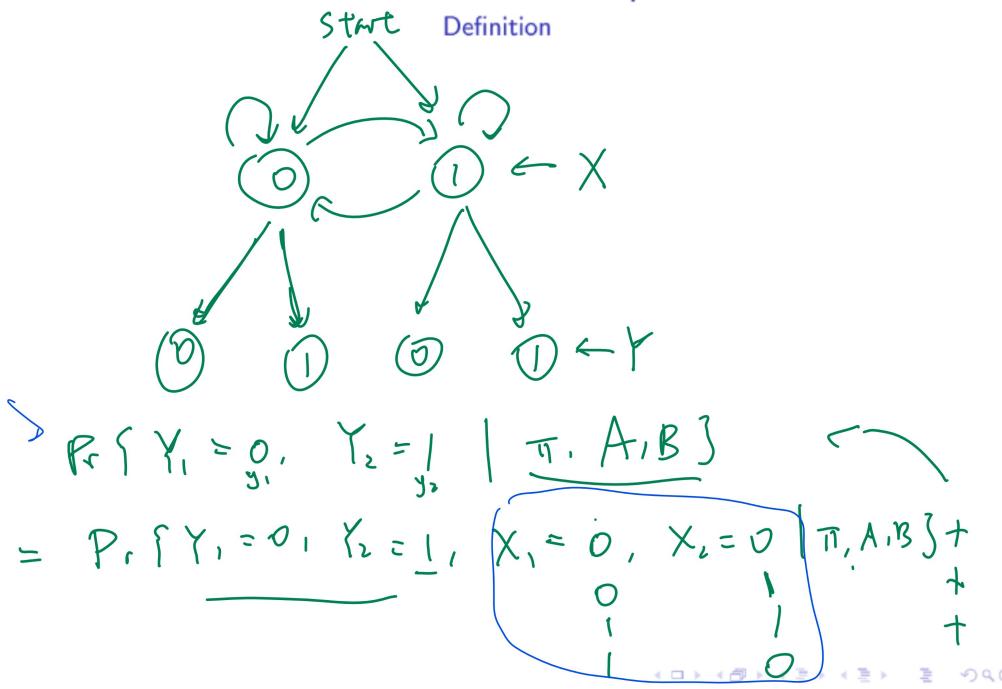
$$\mathbb{P} \{y_{1}, y_{2}, ..., y_{T} | \pi, A, B\}$$

$$= \sum_{x_{1}, x_{2}, ..., x_{T}} \mathbb{P} \{y_{1}, y_{2}, ..., y_{T} | x_{1}, x_{2}, ..., x_{T}\} \mathbb{P} \{x_{1}, x_{2}, ..., x_{T}\}$$

$$= \sum_{x_{1}, x_{2}, ..., x_{T}} \left(\prod_{t=1}^{T} B_{y_{t}x_{t}} \right) \left(\pi_{x_{1}} \prod_{t=2}^{T} A_{x_{t-1}x_{t}} \right)$$

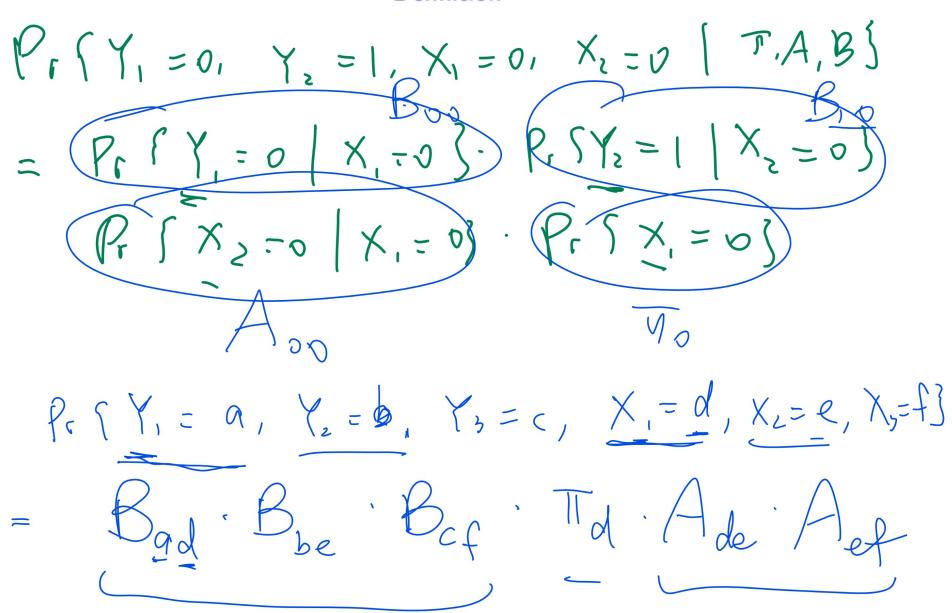
This is also called the Forward Algorithm.

Evaluation Problem Example, Part 1



Evaluation Problem Example, Part 2

Definition



Evaluation Problem Example, Part 3

Definition

Decoding Problem

Definition

• The task is to find $x_1, x_2, ..., x_T$ that maximizes $\mathbb{P}\{x_1, x_2, ..., x_T | y_1, y_2, ..., y_T, \pi, A, B\}. = \mathbb{P}_{r} \text{ Cy}_{r} \text{ Y}_{r} \text{ X}_{1}.$ The task is to find $x_1, x_2, ..., x_T$ that maximizes $\mathbb{P}_{r} \text{ Cy}_{r} \text{ Y}_{r} \text{ X}_{1}.$

- Dynamic programming needs to be used to save computation.
- This is called the Viterbi Algorithm.

Viterbi Algorithm Value Function

Definition

 Define the value functions to keep track of the maximum probabilities at each time t and for each state k.

$$V_{1,k} = \mathbb{P} \{y_1 | X_1 = k\} \cdot \mathbb{P} \{X_1 = k\}$$

$$= B_{y_1k} \pi_k$$

$$V_{t,k} = \max_{x} \mathbb{P} \{y_t | X_t = k\} \mathbb{P} \{X_t = k | X_{t-1} = x\} V_{1,k}$$

$$= \max_{x} B_{y_t k} A_{kx} V_{1,k}$$

$$= \sum_{x} P_{x} \{y_t | X_t = k\} \mathbb{P} \{X_t = k | X_{t-1} = x\} V_{1,k}$$

Viterbi Algorithm Policy Function

Definition

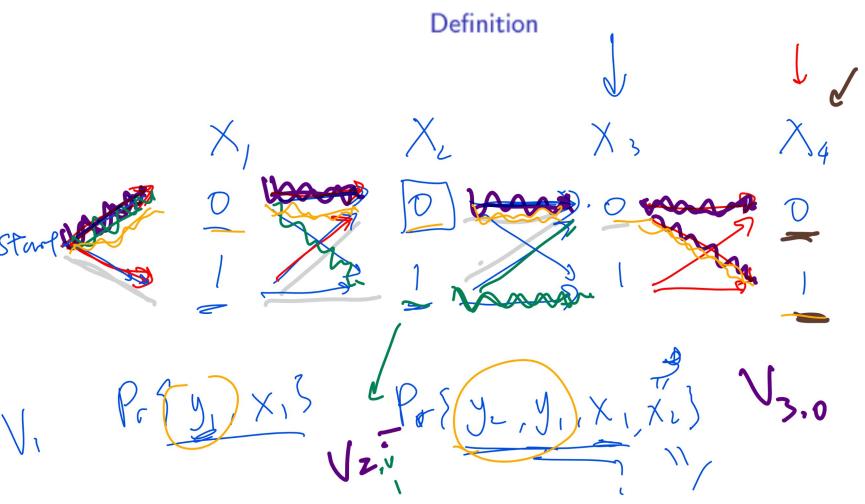
 Define the policy functions to keep track of the x_t that maximizes the value function.

 Given the policy functions, the most probable hidden sequence can be found easily.

$$x_T = \arg \max_{x} V_{T,x}$$

$$x_t = \operatorname{policy}_{t+1,x_{t+1}}$$

Dynamic Programming Diagram



Viterbi Algorithm Diagram

Definition

Initialize the hidden Markov model.

$$\pi \sim D(|X|), A \sim D(|X|, |X|), B \sim D(|Y|, |X|)$$

Perform the forward pass.

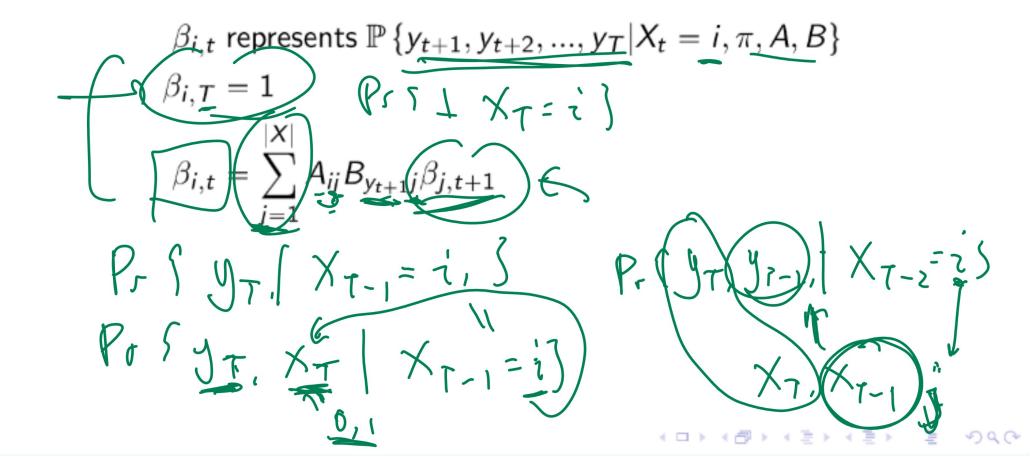
$$\alpha_{i,t} \text{ represents } \mathbb{P}\{y_1, y_2, ..., y_t, X_t = i | \pi, A, B\}$$

$$\alpha_{i,1} = \pi_i B_{y_1,i} \qquad P_r \mid y_1, X_1 = i \mid \pi, A, B\}$$

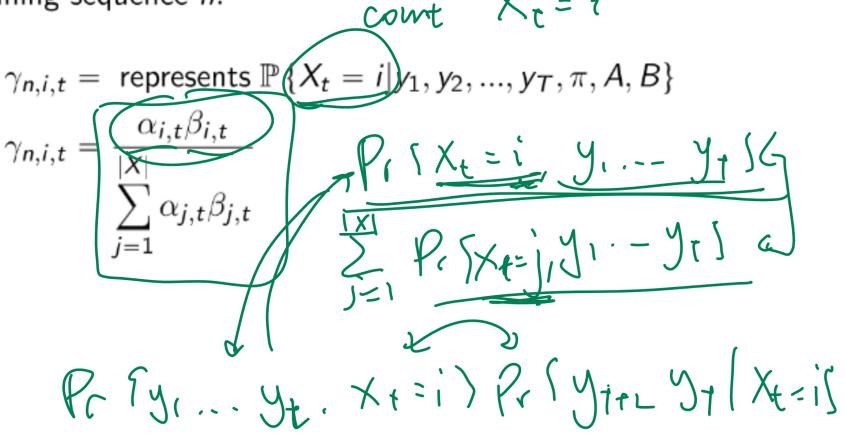
$$\alpha_{i,t+1} = \sum_{j=1}^{|X|} \alpha_{j,t} A_{ji} B_{y_{t+1}i} \qquad P_r \mid y_1, Y_2 = i \mid \pi, A, B\}$$

$$\alpha_{i,t+1} = \sum_{j=1}^{|X|} \alpha_{j,t} A_{ji} B_{y_{t+1}i} \qquad P_r \mid y_1, Y_2 = i \mid \pi, A, B\}$$

Perform the backward pass.



• Define the conditional hidden state probabilities for each training sequence n.



 Define the conditional hidden state probabilities for each training sequence n.

training sequence
$$n$$
.

Cowl $X_t = i$, $X_{t+1} = j$ $Y_1, Y_2, ..., Y_T, \pi, A, B$ }

$$\xi_{n,i,j,t} = \begin{cases} \alpha_i, A_{ij}\beta_{j,t+1}B_{y_{t+1}j} \\ \sum_{k=1}^{N}\sum_{l=1}^{N}\alpha_{k,t}A_{kl}\beta_{l,t+1}B_{y_{t+1}w} \\ \sum_{k=1}^{N}\sum_{l=1}^{N}\alpha_{k,t}A_{kl}\beta_{l,t+1}B_{y_{t+1}w}$$

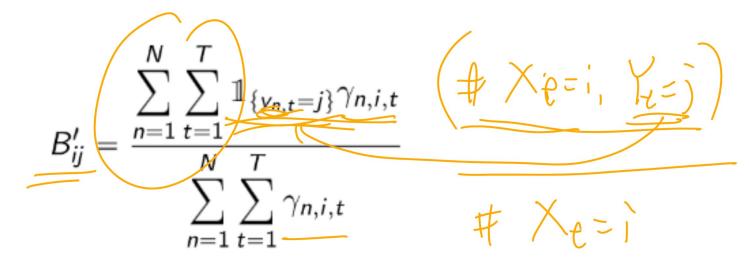
Update the model.

$$\pi_{i}^{\prime} = \frac{\sum_{n=1}^{N} \gamma_{n,i}(1)}{N}$$

$$A_{ij}^{\prime} = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T-1} \xi_{n,i,j,t}}{\sum_{n=1}^{N} \sum_{t=1}^{T-1} \gamma_{n,i,t}}$$

$$\pi_{i}^{\prime} = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T-1} \xi_{n,i,j,t}}{N}$$

Update the model, continued.



• Repeat until π, A, B converge. \subseteq