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Special Bayesian Network for Sequences

Motivation

/Y\J

@ A sequence of features Xi, X, ... can be modelled by a
Markov Chain but they/are/not observable.

@ A sequence of labels Y7, Y5, ... depends only on the current
hidden features and tFey are observable.

@ This type of Bayesian Network is call a Hidden Markov Model.
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HMM Applications Part 1

Motivation

e Weather prediction. )

[ 4

e Hidden states: | X1, X5, ... Jare weather that is not observable by
a person staying me (sunny, cloudy, rainy).

@ Observable states: /W’l,‘Yz, ...}are Badger Herald newspaper
reports of the condition (dry, dryish, damp, soggy).

—~— b—e—ﬂ’\—

Speech recognition. —

—4 op gnitio
e Hidden states: Xj, X, ... are words. §\°ma/g-
o Observable states: Y7, Y2, ... are acoustic features.
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HMM Applications Part 2

Motivation

e Stock or bond prediction.

e Hidden states: Xf}(z, ... are information about the compnay

(profitability, risrffié%@s).\/ Y
e-t)

@ Observable states: Y7, Y>, ... are stock or bond prices.,
h— /—

ro Speech synthesis: Chatt;:)x.

: 7 X <
e Hidden states: PXQ a?!sg)ntext or part of speech.

m— /—N
—o Observable states:| Y7, Y2, ...)are words.
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Other HMM Applications

HMM Evaluatnon

Motivation

Machine translation.

Handwritting recognition.

Gene prediction.

Traffic control.
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Hidden Markov Model Diagram

Motivation
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Transition and Likehood Matrices

Motivation

e An initial distribution vector and two state transition matrices
are used to represent a hidden Markov model.

© Initial state vector: .

m=P{Xy=1i},i€l,2,..|X|

\—

© State transition matrix: A.

AU = P{Xt =j|Xt_1 = I}I_/E 1,2,..., |X|

/

© Observation Likelihood matrix (or output probability
T L oh——— N
distribution): B. = ==

Bi =P{Y:=ilX;=j},i€l,2..|Y],je1,2 .. |X]

——
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Markov Property

Motivation

e The Markov property implies the following conditionally
independence property.

P{xt|xt 1, Xt 21°"9X1} =]P{Xt|xt 1}
P {yt|xes Xe—1, -, X1} = P {ye|x¢}
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Evaluation and Training

Motivation

@ There are three main tasks associated with a HMM.

© Evaluation problem: finding the probability of an observed
sequence given an HMM: yq, ys. ...

@ Decoding problem: finding tost probable hidden sequence

given the observed sequence

Y © Learning problem: finding the probable HMM given an

————
observed sequence: 7, A, B, ... \P
<
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Expectation Maximization Algorithm
" —Description

e Start with a random guess of 7. A. B.

e Compute the forward probabilities: the joint probability of a
observed sequence and its hidden state.

e Compute the backward probabilities: the probability of a
observed sequence given its hidden state.

e Update the model 7, A, B using Bayes rule.

. —_— )
e Repeat until convergence.”’

e Sometimes, it is called the Baum-Welch Algorithm.
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Evaluation Problem

Definition

O'\ 0-\ O\

@ The task is to find the probability P { yl yz,. ,y7-|7r A, B}.

W/
P{y1, _V2«

IP’{)/1 Vo, e YTIX1, X2, oy X7} P {X1, X0, ..., XT}_\

: 1, x;xr (1_[ Bym) (Wn ]I[/:; m) J

X14X24:0 04 XT ’2

@ This is also called the Forward Algorithm.



Hidden Markov Model HMM Evaluation HMM Trainin
0000000 00080000000 000000

Evaluation Problem Example, Part 1
St  Definition
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Evaluation Problem Example, Part 2

Definition

Ci{Y 20 Y. =1, % =0 %=u [ TADB)
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Evaluation Problem Example, Part 3

Definition
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Decoding Problem

Definition
Y ) f
@ The task is to find x1. x>, ..., xT that maximizes j/ S
P{x1.%0, . XT[Y1. Y20 o, YN A B}, = [7c C‘ﬂw—ﬂr
o Direct computatien-is-too expensive. Pefy 7

@ Dynamic programming needs to be used to save computation.
e This is called the Viterbi Algorithm. S /\
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Viterbi Algorithm Value Function

Definition

@ Define the value functions to keep track of the maximum
probabilities at each time t and for each state k.

Vlk—P{Y1|X1—k} P {X WYJ

= )’1k7rk 2\_/
Vik = maxp{)’tp(t =k} P{X; —fl_Xt/l = x} V1«

—— &
- man BytkAkx Vl k
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Viterbi Algorithm Policy Function

Definition

@ Define the policy functions to keep track of the x; that
maximizes the value function.

policy ; , = arg maj
' X

e Given the poljcy functions, the most probable hidden sequence
can be found |easily.

>
-
|

arg max Vr
X

x¢ = policy t+1.xe41
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Dynamic Programming Diagram

Definition
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Viterbi Algorithm Diagram

Definition
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Expectation Maximization Algorithm (for HMM), Part 1
Algorithm

o Initialize the hidden Markov model.  (_Q T

— L — _

m~ D (X]),A~ D (IX],|X]),B~ D (|Y].[X])

@ Perform the forward pass. 7(_(1« 3
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Expectation Maximization Algorithm (for HMM), Part 2
Algorithm

e Perform the backward pass.

3 + represents P{xf+1,yt+2, L YT | Xt =, wﬁ,\B}

—
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Expectation Maximization Algorithm (for HMM), Part 3
Algorithm

@ Define the conditional hidden state probabilities for each
training sequence n. ‘
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Expectation Maximization Algorithm (for HMM), Part 4
Algorithm

@ Define the conditional hidden state probabilities for each

comt A=t K 7]
Enijt re|r>resent5?{~§t\= i Xz}l_ijlyl, Y2, 0 YT, T, A, B}
A

;.

training sequence n.

iPjt+1Byaj <=
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Expectation Maximization Algorithm (for HMM), Part 5
Algorithm

e Update the model.
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Expectation Maximization Algorithm (for HMM), Part 6
Algorithm

e Update the model, continued.

—j} Vit @ %f/’“ | )

i 7%‘«1\

e Repeat until 7, A, B converge.~—






