CS540 Introduction to Artificial Intelligence Lecture 23

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

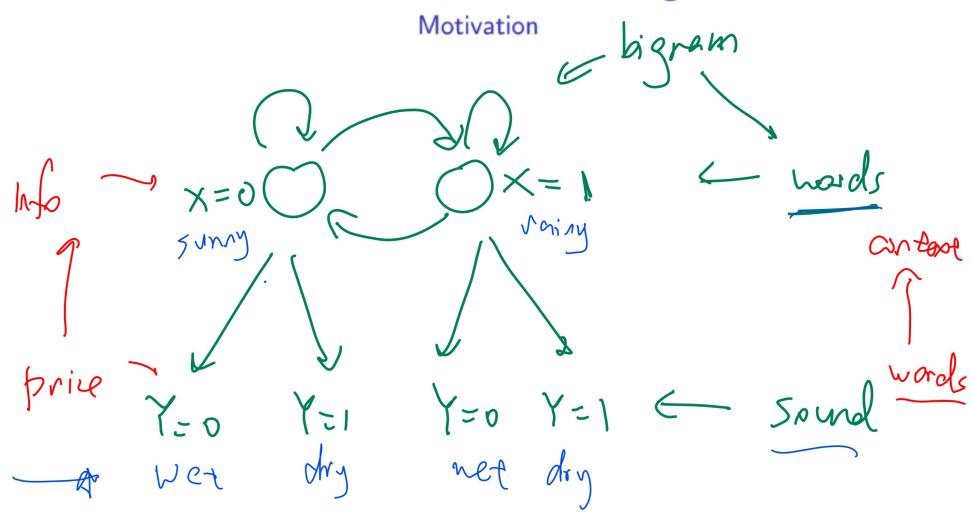
Dyer

June 18, 2020

Special Bayesian Network for Sequences Motivation

- A sequence of features $X_1, X_2, ...$ can be modeled by a Markov Chain but they are not observable.
- A sequence of labels $Y_1, Y_2, ...$ depends only on the current hidden features and they are observable.
- This type of Bayesian Network is called a Hidden Markov Model.

Hidden Markov Model Diagram



Evaluation and Training

Motivation

- There are three main tasks associated with an HMM.
- ① Evaluation problem: finding the probability of an observed sequence given an HMM: $y_1, y_2, ...$
- ② Decoding problem: finding the most probable hidden sequence given the observed sequence: $x_1, x_2, ...$
- **3** Learning problem: finding the most probable HMM given an observed sequence: $\pi, A, B, ...$

Evaluation Problem

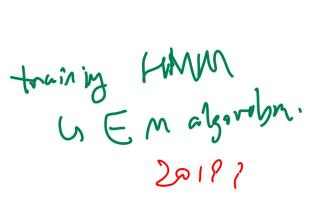
Definition

• The task is to find the probability $\mathbb{P}\{y_1, y_2, ..., y_T | \pi, A, B\}$.

$$\mathbb{P} \{y_1, y_2, ..., y_T | \pi, A, B\}
= \sum_{x_1, x_2, ..., x_T} \mathbb{P} \{y_1, y_2, ..., y_T | x_1, x_2, ..., x_T\} \mathbb{P} \{x_1, x_2, ..., x_T\}
= \sum_{x_1, x_2, ..., x_T} \left(\prod_{t=1}^T B_{y_t x_t} \right) \left(\pi_{x_1} \prod_{t=2}^T A_{x_{t-1} x_t} \right)$$

This is also called the Forward Algorithm.

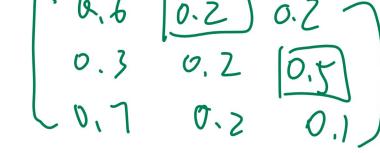
Definition



• Compute $\mathbb{P}\{X_4 = Y, X_5 = Z | X_3 = X\}.$

• Compute $\mathbb{P}\{X_1 = X, X_2 = Z | Y_1 = A, Y_2 = B\}$.

$$\mathcal{B}_{A} = \begin{pmatrix} 0.7 \\ 0.3 \\ 0.5 \end{pmatrix} \longrightarrow \mathcal{B}_{B} = \begin{pmatrix} 0.2 \\ 6.7 \\ 0.5 \end{pmatrix} \qquad \mathcal{B} = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \\ 0.5 & 0.5 \end{pmatrix}$$



$$\mathcal{G} = \begin{pmatrix} 0.7 & 0.2 \\ 0.3 & 0.7 \\ 0.5 & 0.5 \end{pmatrix}$$

Definition

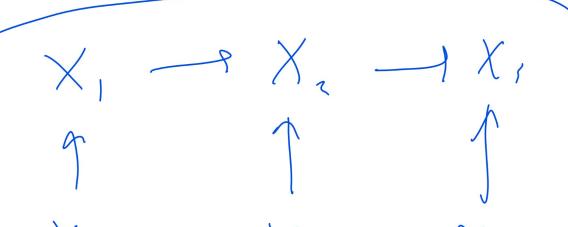
Definition

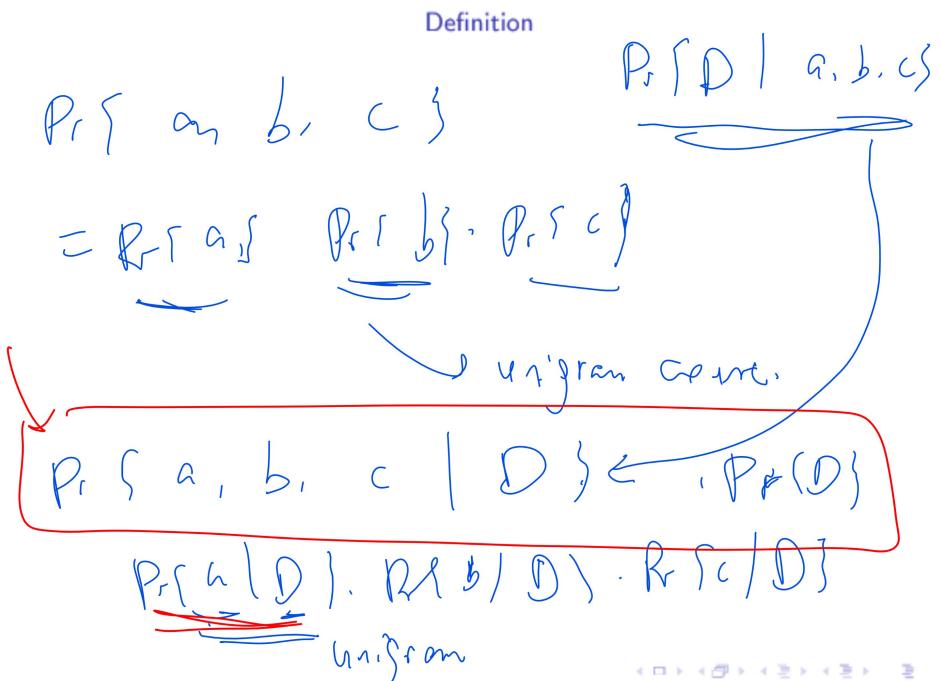
$$\begin{cases}
P_{c} \left(X_{4} = Y, X_{5} = E \mid X_{3} = X \right) \\
= P_{c} \left(X_{4} = Y \mid X_{5} = X \right), P_{c} \mid X_{5} = E \mid X_{4} = Y \right) \\
= 0.2 \cdot 0.5$$

$$= P_r \int Y_1 = A | X_1 = X_1 \cdot R_r \int Y_1 = B | X_2 = Z_1$$

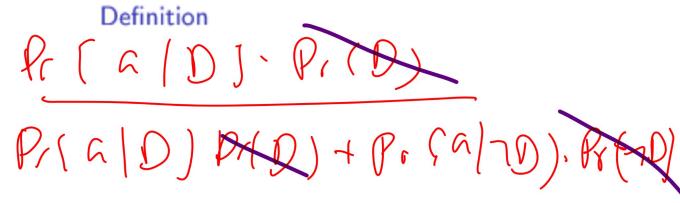
$$P_r (X_1 = X_1) \cdot P_r (X_2 = Z_1) \times (Z_1 = X_1)$$

P3 (Y = B)





Decoding Problem



- The task is to find $x_1, x_2, ..., x_T$ that maximizes $\mathbb{P}\{x_1, x_2, ..., x_T | y_1, y_2, ..., y_T, \pi, A, B\}.$
- Direct computation is too expensive.
- Dynamic programming needs to be used to save computation.
- This is called the Viterbi Algorithm.

Viterbi Algorithm Value Function

Definition

 Define the value functions to keep track of the maximum probabilities at each time t and for each state k.

$$V_{1,k} = \mathbb{P} \{y_1 | X_1 = k\} \cdot \mathbb{P} \{X_1 = k\}$$

$$= B_{y_1 k} \pi_k$$

$$V_{t,k} = \max_{x} \mathbb{P} \{y_t | X_t = k\} \mathbb{P} \{X_t = k | X_{t-1} = x\} V_{1,k}$$

$$= \max_{x} B_{y_t k} A_{kx} V_{1,k}$$

Viterbi Algorithm Policy Function

Definition

• Define the policy functions to keep track of the x_t that maximizes the value function.

policy
$$_{t,k} = \arg \max_{x} B_{y_t k} A_{kx} V_{1,k}$$

 Given the policy functions, the most probable hidden sequence can be found easily.

$$x_T = \arg \max_{x} V_{T,x}$$

 $x_t = \operatorname{policy}_{t+1,x_{t+1}}$

Dynamic Programming Diagram Definition

Viterbi Algorithm Diagram

Definition

Algorithm

Initialize the hidden Markov model.

$$\pi \sim D(|X|), A \sim D(|X|, |X|), B \sim D(|Y|, |X|)$$

Perform the forward pass.

$$\alpha_{i,t} \text{ represents } \mathbb{P} \{y_1, y_2, ..., y_t, X_t = i | \pi, A, B\}$$

$$\alpha_{i,1} = \pi_i B_{y_1,i}$$

$$\alpha_{i,t+1} = \sum_{j=1}^{|X|} \alpha_{j,t} A_{ji} B_{y_{t+1}i}$$

Perform the backward pass.

$$eta_{i,t}$$
 represents $\mathbb{P}\left\{y_{t+1},y_{t+2},...,y_T|X_t=i,\pi,A,B\right\}$ $eta_{i,T}=1$
$$eta_{i,t}=\sum_{j=1}^{|X|}A_{ij}B_{y_{t+1}j}\beta_{j,t+1}$$

 Define the conditional hidden state probabilities for each training sequence n.

$$\gamma_{n,i,t} = \text{ represents } \mathbb{P}\{X_t = i | y_1, y_2, ..., y_T, \pi, A, B\}$$

$$\gamma_{n,i,t} = \frac{\alpha_{i,t}\beta_{i,t}}{\sum\limits_{j=1}^{|X|} \alpha_{j,t}\beta_{j,t}}$$

 Define the conditional hidden state probabilities for each training sequence n.

$$\xi_{n,i,j,t} \text{ represents } \mathbb{P}\{X_{t} = i, X_{t+1} = j | y_{1}, y_{2}, ..., y_{T}, \pi, A, B\}$$

$$\xi_{n,i,j,t} = \frac{\alpha_{i,t}A_{ij}\beta_{j,t+1}B_{y_{t+1}j}}{\sum_{k=1}^{|X|}\sum_{l=1}^{|X|}\alpha_{k,t}A_{kl}\beta_{l,t+1}B_{y_{t+1}w}}$$

Update the model.

$$\pi'_{i} = \frac{\sum_{n=1}^{N} \gamma_{n,i,1}}{N}$$

$$A'_{ij} = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T-1} \xi_{n,i,j,t}}{\sum_{n=1}^{N} \sum_{t=1}^{T-1} \gamma_{n,i,t}}$$

$$C > 0 > 0$$

Update the model, continued.

$$B'_{ij} = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T} \mathbb{1}_{\{y_{n,t}=j\}} \gamma_{n,i,t}}{\sum_{n=1}^{N} \sum_{t=1}^{T} \gamma_{n,i,t}}$$

$$C_{\gamma=j} = \sum_{r=1}^{N} \sum_{t=1}^{T} \gamma_{r} \gamma_{r}$$

Repeat until π, A, B converge.