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Special Bayesian Network for Sequences

Motivation

e A sequence of features Xi.X>.... can be modeled by a Markov
Chain but they are not observable.

@ A sequence of labels Y7, Y5, ... depends only on the current
hidden features and they are observable.

e This type of Bayesian Network is called a Hidden Markov
Model. -
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Hidden Markov Model Diagram
Motivation
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Evaluation and Training

Motivation

@ [here are three main tasks associated with an HMM.
© Evaluation problem: finding the probability of an observed
sequence given an HMM: yq, yo, ...

@ Decoding problem: finding the most probable hidden sequence
given the observed sequence: xi, X, ...

© Learning problem: finding the most probable HMM given an
observed sequence: 7, A, B, ... ]
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Evaluation Problem

Definition

@ The task is to find the probability P {y;, y», ..., yr|7, A, B}.
o /\

P{yleyZa"'ayTlﬂ'tAaB}
= 2 P{y1,y2, ... y7lx1, x2, oo X7} P {x1, X2, ..., XT}

X13X25++ 3 XT
T T
= 2 (B | | ma [ [Ancin
X1,X2,....XT \t=1 fam2

@ This is also called the Forward Algorithm.
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Evaluation Problem Example, Part 1

Definition
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o Fall 2018 Final Q28 and Q29
o Compute| P {(Xs = Y. Xs = Z|X; — X))
o Compute P {X; = X, X, =$Y1 =AY, =B}

X\ = "~ eb (0.2 07
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Evaluation Problem Example, Part 2

Definition
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Evaluation Problem Example, Part 4

Definition Pf Y@ ) Q‘}I 6/5
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Decoding Problem

Definition

Qf (2 [D]> m\
P&|D) Q)+ Fr 051D) REQ

@ The task is to find xj. X2, .... x7 that maximizes
P{x1. %, ... XT|y1. Y2, .. Y7, 7, A, B},
e Direct computation is too expensive.

Pr (@\@) E

 Dynamic programming needs to be used to save computation.
e This is called the Viterbi Algorithm.
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Viterbi Algorithm Value Function

Definition

@ Define the value functions to keep track of the maximum
probabilities at each time t and for each state k.

Vik =P{|X = k} - P{X; = k)
= By, kTk
max P {ye| Xe = k} P {Xe = k|Xe—1 = x} Vi

Vtk

4

= m}?x BytkAkx Vl,k



Hidden Markov Model HMM Evaluation HMM Training
00 00000000800 000000

Viterbi Algorithm Policy Function

Definition

@ Define the policy functions to keep track of the x; that
maximizes the value function.

policy ; , = argmax By, kA V1 «
’ X
@ Given the policy functions, the most probable hidden sequence
can be found easily.

XT = arg max VT,x
X

Xt policy t4+1,541
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Dynamic Programming Diagram

Definition
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Viterbi Algorithm Diagram

Definition
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Expectation-Maximization Algorithm (for HMM), Part 1
- — Algorithm

AV

@ [nitialize the hidden Markov model.

m~ D (|X]),A~ D (IX].|X]).B~ D (|Y],]X])

@ Perform the forward pass.

i ¢ represents P {y1, yo,.... ¢, X¢ = i|m, A, B}
aj1 = m;By,
X

O pi1 = Z aj tAjiBy, . i
j=1
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Expectation-Maximization Algorithm (for HMM), Part 2
Algorithm

@ Perform the backward pass.

Bi,t represents P {y; 1, Ye42, ., YT | Xe = i, 7, A, B}
Didp=il

X
Bf,t = Z A.{jByt+u'6j,t+l

j=1
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Expectation-Maximization Algorithm (for HMM), Part 3
Algorithm

e Define the conditional hidden state probabilities for each

training sequence n. X
C 7
Ynit = represents IE{X: = igq.yz, . yr.m A, B}
N et
'nit =

X

A,
Z jt)t
j=1
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Expectation-Maximization Algorithm (for HMM), Part 4
Algorithm

@ Define the conditional hidden state probabilities for each
training sequence n.

‘fn,id‘,t represents Pg: i, X ey

n,ld,t - X |x|

Z Z g, t Ak B1t+1Byeyw
k=1/=1

YT, m, A B}
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Expectation-Maximization Algorithm (for HMM), Part 5
Algorithm

e Update the model.

A
[
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Expectation-Maximization Algorithm (for HMM), Part 6
Algorithm

e Update the model, continued.

@ Repeat until 7, A, B converge.





