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Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles
Dyer

June 22, 2020



Hidden Markov Model HMM Evaluation HMM Training
0000000 00000000000 00000C

Midterm Format
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@ July 6 from 5:30 to 8 : 30

o A:
@ B: | can make July 6

o C: | canake July 7 ¢ Libo +9 340
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@ D: | can not make July 6 or July 7
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HMM Training

Midterm Reivew Session

Giyo - 3379

@ June 29 Dan will go through selected Homework questions
and Past Exam questions, not recorded, notes will be posted.

e Dandi will go through the same questions this Thursday and

Friday (June 18 and 19)12 : 30 to 1 : 45 for section 1, you can
use the guest link to attend too.
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Markov Chain Review
Quiz

@ Given the transition matrix for "I", "am”, " Groot", what is
the probability that the third word is " Groot’" given the first is
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Causal Chain Review

Quiz

@ Suppose the Bayesian Network i% A—-B - C, glhat IS
P{A=1,C=1}7

—

P{A=1}\=0.4
P{B=1A=1}=08P{B=1A=0}=0.1

5

P{C=1|B=1) =0.3,IP{ =0.7
7

e A:04-0.3
e B:0.4-0.8-0.3\. F
.4-0.8-0.3+04 0.2-0.7

@ D:04-08:-03+0.4-0.1-0.7
o E:0.4-08-0.3+04-0.2-0.3
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Causal Chain Review 2

Quiz
PIA=1,C=1
P{A=1|C =1}= { < }.WhatisIP’ C =
. ~ P{C =1}

oA 0.3-0.8- 04+03 01 OZJ+07 08-04+0.7-0.1-0.6

3 0.8-0.4+0.3-0.1-0.614+ 07 (02 0.4 +0.70.9) 0.6

C 03-08-04+03-0.1-04+0.7-08-04+0.7-0.1-0.4
e D:03-08-04+03-01-04+0.7-02-04+4+0.7-09-0.4
e E:03-08-04+03-08-06+0.7-0.2-04+0.7-0.2-0.6
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Causal Chain Review Derivation
Quiz



Hidden Markov Model HMM Evaluation HMM Training

C00000e0 0000000000C 00000C
Special Bayesian Network for Sequences

Motivation pmfr)@’(e
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e A sequence of features Xi, X>.... can be modeled by a Markov
Chain but they are not observable.

@ A sequence of labels Y7, Y. ... depends only on the current
hidden features and they are @

@ This type of Bayesian Network is called a Hidden Markov
Model. — o i




Hidden Markov Model HMM Evaluation HMM Training
0000000e 00000000000 QO0000C

Hidden Markov Model Diagram

Motivation
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Evaluation and Training

Motivation

@ There are three main tasks associated with an HMM.

© Evaluation problem: finding the probability of an observed
XX sequence given an fIMM: y4, y», ...

@ Decoding problem: findifg the most probable hidden seq

given the observed sequ nce' M 3

© Learning problem: finding the most probable HMM given an
observed sequence: 7, A, B....
———
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Evaluation Problem
Definition
@ The task is to find the probability P {y1, yo, ..., y1|m, A, B}.

P {}’1;~)/2: '“:-yT|ﬂ-? A? B}
- E P{y1, 2, -, y7lx1, X2, oo, X7} P {X1, X2, .. X7}

X1,X25--3XT
T T
= 2 ‘ ‘ By’rxr Txg ‘ |AXt—1Xt
M M e =R =2

@ This is also called the Forward Algorithm.
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Evaluation Problem Example, Part 1

Definition

o Fall 2018 Final Q28 and Q29 (4)

N

N4 Compute P{Xs = Y, X5 = Z|X3 = X}. —
@ Compute P{X; = XX2—Z|Y1 A, Y, = B}.
—_— O T—= o

am——

Pr( X =2 )Xoft?'ﬁ'ﬁ)r | e =T )YfXj
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Evaluation Problem Example, Part 2

Definition
K=x %:2] YV, =A ¥,7B
/ X»‘ a/ '\TI;’A ’z‘
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Evaluation Problem Example, Part 3

Definition
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Evaluation Problem Example, Part 4

Definition
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Decoding Problem

Definition

@ The task is to fin@hat maximizes

P {x1, xo, xT|yl/_y2/_/yL\7r A, B}.

r.>—-a° ’ .
@ Direct computation is too expensive.

@ Dynamic programming needs to be used to save computation.

——

e This is called the Viterbi Algorithm. 597)
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Viterbi Algorithm Value Function

Definition

@ Define the value functions to keep track of the maximum
probabilities at each time t and for each state k.

Vik =P{|X = k} - P{X; = k)
= By, kTk
max P {ye| Xe = k} P {Xe = k|Xe—1 = x} Vi

Vtk

4

= m}?x BytkAkx Vl,k
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Viterbi Algorithm Policy Function

Definition

@ Define the policy functions to keep track of the x; that
maximizes the value function.

policy ; , = argmax By, kA V1 «
’ X
@ Given the policy functions, the most probable hidden sequence
can be found easily.

XT = arg max VT,x
X

Xt policy t4+1,541
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Dynamic Programming Diagram

Definition
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Viterbi Algorithm Diagram

Definition
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Expectation-Maximization Algorithm (for HMM), Part 1
Algorithm

@ Initialize the hidden Markov model.

m~ D (|X]),A~ D (IX],|X]),B~ D (]Y].[X])

@ Perform the forward pass.

i ¢ represents P {yq, yo, ..., v4, Xt = i|m, A, B}

\/— ————

aj1 = miBy, i
X

Qj 41 = 2 o tAiBy, . i
j=1
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Expectation-Maximization Algorithm (for HMM), Part 2
Algorithm

@ Perform the backward pass.

Bi,t represents P{yt+layt+21 °'°a¥‘7ixt = i$ w, Aa B}

e

Birt=1
X

/3i,t = Z Aij'Byt+1j!8j,t+1
J=1
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Expectation-Maximization Algorithm (for HMM), Part 3
Algorithm

@ Define the conditional hidden state probabilities for each
training sequence n.

~/ .
;'n,l.t -

-~ o
;'n,l,t

)
u\



Hidden Markov Model HMM Evaluation HMM Training
00000000 00000000000 Q00800

Expectation-Maximization Algorithm (for HMM), Part 4
Algorithm

@ Define the conditional hidden state probabilities for each

training sequence n. \
Enij,t represents PF{X; =i, Xt1 = jly1, y2, ..., y7, 7, A, B}

Y 7 . Calt
“"htAde.t* 18y:+u

Enigit = XX e (W [ we-r)
YD atAuBrec1Byaw

k=1I=1
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Expectation-Maximization Algorithm (for HMM), Part 5
Algorithm

e Update the model.
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Expectation-Maximization Algorithm (for HMM), Part 6

Algorithm
@ NN,

e Update the model, continued.

/ n=1 1 —_—
Bjj N T — ~
X Mamie) €y
n=1t=1 xtﬂ\

e Repeat until 7, A, B converge.

N e





