CS540 Introduction to Artificial Intelligence Lecture 23

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

June 22, 2020

Midterm Format

Admin

QI

(monday)

- July 6 from 5 : 30 to 8 : 30
- A:
- B: I can make July 6
- C: I can only make July 7: 5:30 to 8:30
- D: I can not make July 6 or July 7
- E:

Midterm Reivew Session

- June 29 Dan will go through selected Homework questions and Past Exam questions, not recorded, notes will be posted.
- Dandi will go through the same questions this Thursday and Friday (June 18 and 19)12: 30 to 1: 45 for section 1, you can use the guest link to attend too.

Markov Chain Review

Quiz

 Given the transition matrix for "I", "am", "Groot", what is the probability that the third word is "Groot" given the first is

• A: 0.7

Prsw3=Gnood W= I3

• B: $0.2 \cdot 0.4 + 0.3 \cdot 0.3$

• C: $0.2 \cdot 0.5 + 0.7 \cdot 0.3$

Pr { 4 = Crost | W2 }

· J. Ps/ N= 5"

• D: $0.1 \cdot 0.7 + 0.2 \cdot 0.5 + 0.7 \cdot 0.3$

• E: $0.3 \cdot 0.3 + 0.2 \cdot 0.4 + 0.1 \cdot 0.3$

Causal Chain Review

Quiz

• Suppose the Bayesian Network is $A \rightarrow B \rightarrow C$, what is

$$\mathbb{P}\{A=1, C=1\}$$
?

$$\mathbb{P}\{A=1\}=0.4$$

$$\mathbb{P}\left\{B=1|A=1\right\}=0.8, \mathbb{P}\left\{B=1|A=0\right\}=0.1$$

$$\mathbb{P}\left\{C = 1 | B = 1\right\} = 0.3, \mathbb{P}\left\{C = 1 | B = 0\right\} = 0.7$$

PRIBEILA=I

- A: 0.4 · 0.3
- B: 0.4 · 0.8 · 0.3
- C: $0.4 \cdot 0.8 \cdot 0.3 + 0.4 \cdot 0.2 \cdot 0.7 \times$
- D: $0.4 \cdot 0.8 \cdot 0.3 + 0.4 \cdot 0.1 \cdot 0.7$
- E: $0.4 \cdot 0.8 \cdot 0.3 + 0.4 \cdot 0.2 \cdot 0.3$

03) + 040,7.0.7

Pr 1731 AS

Causal Chain Review 2

Quiz

$$\mathbb{P}\left\{A=1|C=1\right\} = \frac{\mathbb{P}\left\{A=1,C=1\right\}}{\mathbb{P}\left\{C=1\right\}}. \text{ What is } \mathbb{P}\left\{C=1\right\}?$$

Q4 (ast)

$$\mathbb{P}\left\{A=1\right\}=0.4$$

$$\mathbb{P}\left\{B=1|A=1\right\}=0.8, \mathbb{P}\left\{B=1|A=0\right\}=0.1$$

$$\mathbb{P}\left\{C = 1 | B = 1\right\} = \{0.3, \mathbb{P}\left\{C = 1 | B = 0\right\} = \{0.7\}$$

• A:
$$0.3 \cdot 0.8 \cdot 0.4 + 0.3 \cdot 0.1 \cdot 0.6 + 0.7 \cdot 0.8 \cdot 0.4 + 0.7 \cdot 0.1 \cdot 0.6$$

• B:
$$0.3 \cdot 0.8 \cdot 0.4 + 0.3 \cdot 0.1 \cdot 0.6 + 0.7 \quad 0.2 \quad 0.4 + 0.7 \cdot 0.9 \quad 0.6$$

• C:
$$0.3 \cdot 0.8 \cdot 0.4 + 0.3 \cdot 0.1 \cdot 0.4 + 0.7 \cdot 0.8 \cdot 0.4 + 0.7 \cdot 0.1 \cdot 0.4$$

• D:
$$0.3 \cdot 0.8 \cdot 0.4 + 0.3 \cdot 0.1 \cdot 0.4 + 0.7 \cdot 0.2 \cdot 0.4 + 0.7 \cdot 0.9 \cdot 0.4$$

• E:
$$0.3 \cdot 0.8 \cdot 0.4 + 0.3 \cdot 0.8 \cdot 0.6 + 0.7 \cdot 0.2 \cdot 0.4 + 0.7 \cdot 0.2 \cdot 0.6$$

Causal Chain Review Derivation Quiz

Special Bayesian Network for Sequences

Motivation

alce estable

- A sequence of features $X_1, X_2, ...$ can be modeled by a Markov Chain but they are not observable.
- A sequence of labels $Y_1, Y_2, ...$ depends only on the current hidden features and they are observable.
- This type of Bayesian Network is called a Hidden Markov Model.

Hidden Markov Model Diagram

Motivation

Evaluation and Training

Motivation

- There are three main tasks associated with an HMM.
- Evaluation problem: finding the probability of an observed
- \varkappa sequence given an $\upmu MM$: $y_1, y_2, ...$
- Decoding problem: finding the most probable hidden sequence x_1, x_2, \dots with x_1, x_2, \dots
- Learning problem: finding the most probable HMM given an observed sequence: π, A, B, \dots

Evaluation Problem

Definition

• The task is to find the probability $\mathbb{P}\{y_1, y_2, ..., y_T | \pi, A, B\}$.

$$\mathbb{P} \{y_1, y_2, ..., y_T | \pi, A, B\}
= \sum_{x_1, x_2, ..., x_T} \mathbb{P} \{y_1, y_2, ..., y_T | x_1, x_2, ..., x_T\} \mathbb{P} \{x_1, x_2, ..., x_T\}
= \sum_{x_1, x_2, ..., x_T} \left(\prod_{t=1}^T B_{y_t x_t} \right) \left(\pi_{x_1} \prod_{t=2}^T A_{x_{t-1} x_t} \right)$$

This is also called the Forward Algorithm.

- Fall 2018 Final Q28 and Q29
- Compute $\mathbb{P}\left\{X_4=Y,X_5=Z|X_3=X\right\}$.
 - Compute $\mathbb{P}\{X_1 = X, X_2 = Z | Y_1 = A, Y_2 = B\}$.

Decoding Problem

- The task is to find $x_1, x_2, ..., x_T$ that maximizes $\mathbb{P}\{x_1, x_2, ..., x_T | y_1, y_2, ..., y_T, \pi, A, B\}.$
- Direct computation is too expensive.
- Dynamic programming needs to be used to save computation.
- This is called the Viterbi Algorithm.

Viterbi Algorithm Value Function

Definition

 Define the value functions to keep track of the maximum probabilities at each time t and for each state k.

$$V_{1,k} = \mathbb{P} \{y_1 | X_1 = k\} \cdot \mathbb{P} \{X_1 = k\}$$

$$= B_{y_1 k} \pi_k$$

$$V_{t,k} = \max_{x} \mathbb{P} \{y_t | X_t = k\} \mathbb{P} \{X_t = k | X_{t-1} = x\} V_{1,k}$$

$$= \max_{x} B_{y_t k} A_{kx} V_{1,k}$$

Viterbi Algorithm Policy Function

Definition

• Define the policy functions to keep track of the x_t that maximizes the value function.

policy
$$_{t,k} = \arg \max_{x} B_{y_t k} A_{kx} V_{1,k}$$

 Given the policy functions, the most probable hidden sequence can be found easily.

$$x_T = \arg \max_{x} V_{T,x}$$

 $x_t = \operatorname{policy}_{t+1,x_{t+1}}$

Dynamic Programming Diagram Definition

Viterbi Algorithm Diagram

Initialize the hidden Markov model.

$$\pi \sim D(|X|), A \sim D(|X|, |X|), B \sim D(|Y|, |X|)$$

Perform the forward pass.

$$\alpha_{i,t} \text{ represents } \mathbb{P} \{y_1, y_2, ..., y_t, X_t = i | \pi, A, B\}$$

$$\alpha_{i,1} = \pi_i B_{y_1,i}$$

$$\alpha_{i,t+1} = \sum_{j=1}^{|X|} \alpha_{j,t} A_{ji} B_{y_{t+1}i}$$

Perform the backward pass.

$$eta_{i,t}$$
 represents $\mathbb{P}\left\{y_{t+1},y_{t+2},...,y_{T} \middle| X_{t}=i,\pi,A,B\right\}$

$$eta_{i,T}=1$$

$$eta_{i,t}=\sum_{j=1}^{|X|}A_{ij}B_{y_{t+1}j}\beta_{j,t+1}$$

 Define the conditional hidden state probabilities for each training sequence n.

 Define the conditional hidden state probabilities for each training sequence n.

$$\xi_{n,i,j,t} \text{ represents } \mathbb{P}\{X_{t} = j, X_{t+1} = j | y_{1}, y_{2}, ..., y_{T}, \pi, A, B\}$$

$$\xi_{n,i,j,t} = \frac{\alpha_{i,t}A_{ij}\beta_{j,t+1}B_{y_{t+1}j}}{\sum_{k=1}^{|X|}\sum_{l=1}^{|X|}\alpha_{k,t}A_{kl}\beta_{l,t+1}B_{y_{t+1}w}}$$

$$\mathbb{P}(\{W_{t}, W_{t-1}, W_$$

Update the model.

$$\pi'_{i} = \frac{\sum_{n=1}^{N} \gamma_{n,i,1}}{N}$$

$$A'_{ij} = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T-1} \xi_{n,i,j,t}}{\sum_{n=1}^{N} \sum_{t=1}^{T-1} \gamma_{n,i,t}}$$

$$\chi_{ij} = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T-1} \gamma_{n,i,t}}{\sum_{n=1}^{N} \sum_{t=1}^{T-1} \gamma_{n,i,t}}$$

Update the model, continued.

$$B'_{ij} \neq \frac{\sum_{n=1}^{N} \sum_{t=1}^{T} \mathbb{1}_{\{y_{n,t}=j\}} \gamma_{n,i,t}}{\sum_{n=1}^{N} \sum_{t=1}^{T} \gamma_{n,i,t}}$$

• Repeat until π, A, B converge.