# CS540 Introduction to Artificial Intelligence Lecture 23

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

June 22, 2020

### Midterm Format

### Admin

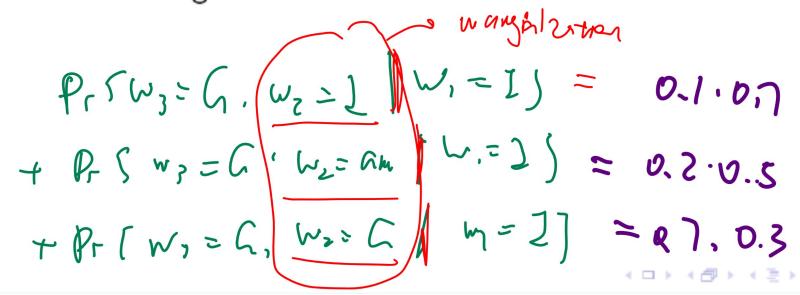
QI

(monday)

- July 6 from 5 : 30 to 8 : 30
- A:
- B: I can make July 6
- C: I can only make July 7: 5:30 to 8:30
- D: I can not make July 6 or July 7
- E:

### Midterm Reivew Session

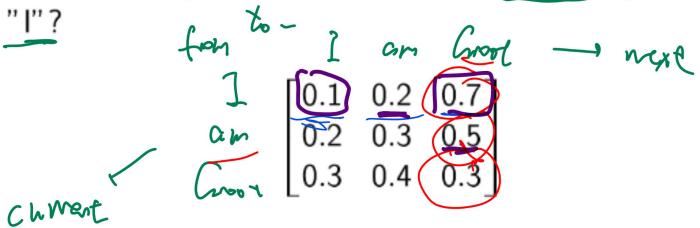
- June 29 Dan will go through selected Homework questions and Past Exam questions, not recorded, notes will be posted.
- Dandi will go through the same questions this Thursday and Friday (June 18 and 19)12: 30 to 1: 45 for section 1, you can use the guest link to attend too.



## Markov Chain Review

### Quiz

 Given the transition matrix for "I", "am", "Groot", what is the probability that the third word is "Groot" given the first is



• A: 0.7

Prsw3=Gnood W= I3

• B:  $0.2 \cdot 0.4 + 0.3 \cdot 0.3$ 

• C:  $0.2 \cdot 0.5 + 0.7 \cdot 0.3$ 

Pr { 4 = Crost | W2 }

· J. Ps/ N= 5"

• D:  $0.1 \cdot 0.7 + 0.2 \cdot 0.5 + 0.7 \cdot 0.3$ 

• E:  $0.3 \cdot 0.3 + 0.2 \cdot 0.4 + 0.1 \cdot 0.3$ 

### Causal Chain Review

### Quiz

• Suppose the Bayesian Network is  $A \rightarrow B \rightarrow C$ , what is

$$\mathbb{P}\{A=1, C=1\}$$
?

$$\mathbb{P}\{A=1\}=0.4$$

$$\mathbb{P}\left\{B=1|A=1\right\}=0.8, \mathbb{P}\left\{B=1|A=0\right\}=0.1$$

$$\mathbb{P}\left\{C = 1 | B = 1\right\} = 0.3, \mathbb{P}\left\{C = 1 | B = 0\right\} = 0.7$$

PRIBEILA=I

- A: 0.4 · 0.3
- B: 0.4 · 0.8 · 0.3
- C:  $0.4 \cdot 0.8 \cdot 0.3 + 0.4 \cdot 0.2 \cdot 0.7 \times$
- D:  $0.4 \cdot 0.8 \cdot 0.3 + 0.4 \cdot 0.1 \cdot 0.7$
- E:  $0.4 \cdot 0.8 \cdot 0.3 + 0.4 \cdot 0.2 \cdot 0.3$

03) + 040,7.0.7

Pr 1731 AS

### Causal Chain Review 2

Quiz

$$\mathbb{P}\left\{A=1|C=1\right\} = \frac{\mathbb{P}\left\{A=1,C=1\right\}}{\mathbb{P}\left\{C=1\right\}}. \text{ What is } \mathbb{P}\left\{C=1\right\}?$$

Q4 ( ast)

$$\mathbb{P}\left\{A=1\right\}=0.4$$

$$\mathbb{P}\left\{B=1|A=1\right\}=0.8, \mathbb{P}\left\{B=1|A=0\right\}=0.1$$

$$\mathbb{P}\left\{C = 1 | B = 1\right\} = \{0.3, \mathbb{P}\left\{C = 1 | B = 0\right\} = \{0.7\}$$



• A: 
$$0.3 \cdot 0.8 \cdot 0.4 + 0.3 \cdot 0.1 \cdot 0.6 + 0.7 \cdot 0.8 \cdot 0.4 + 0.7 \cdot 0.1 \cdot 0.6$$

• B: 
$$0.3 \cdot 0.8 \cdot 0.4 + 0.3 \cdot 0.1 \cdot 0.6 + 0.7 \quad 0.2 \quad 0.4 + 0.7 \cdot 0.9 \quad 0.6$$

• C: 
$$0.3 \cdot 0.8 \cdot 0.4 + 0.3 \cdot 0.1 \cdot 0.4 + 0.7 \cdot 0.8 \cdot 0.4 + 0.7 \cdot 0.1 \cdot 0.4$$

• D: 
$$0.3 \cdot 0.8 \cdot 0.4 + 0.3 \cdot 0.1 \cdot 0.4 + 0.7 \cdot 0.2 \cdot 0.4 + 0.7 \cdot 0.9 \cdot 0.4$$

• E: 
$$0.3 \cdot 0.8 \cdot 0.4 + 0.3 \cdot 0.8 \cdot 0.6 + 0.7 \cdot 0.2 \cdot 0.4 + 0.7 \cdot 0.2 \cdot 0.6$$

# Causal Chain Review Derivation Quiz

# Special Bayesian Network for Sequences

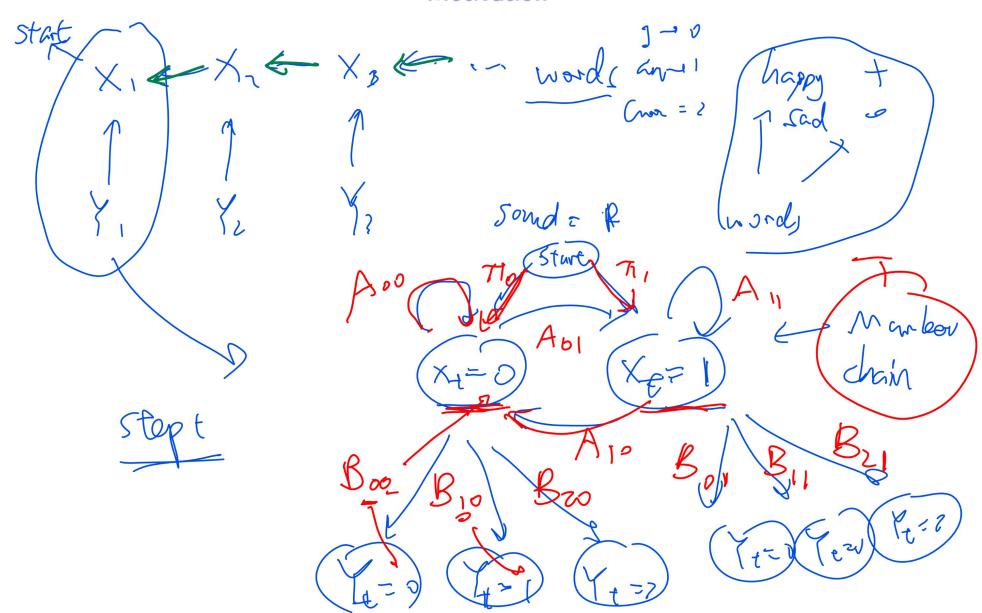
Motivation

alce estable

- A sequence of features  $X_1, X_2, ...$  can be modeled by a Markov Chain but they are not observable.
- A sequence of labels  $Y_1, Y_2, ...$  depends only on the current hidden features and they are observable.
- This type of Bayesian Network is called a Hidden Markov Model.

# Hidden Markov Model Diagram

Motivation



## **Evaluation and Training**

Motivation

- There are three main tasks associated with an HMM.
- Evaluation problem: finding the probability of an observed
- $\varkappa$  sequence given an  $\upmu MM$ :  $y_1, y_2, ...$
- Decoding problem: finding the most probable hidden sequence  $x_1, x_2, \dots$  with  $x_1, x_2, \dots$
- Learning problem: finding the most probable HMM given an observed sequence:  $\pi, A, B, \dots$

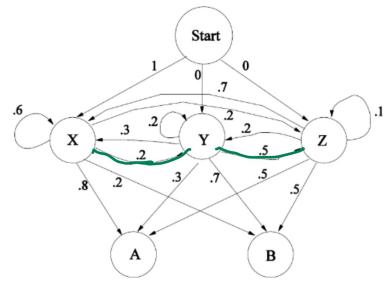
### **Evaluation Problem**

### Definition

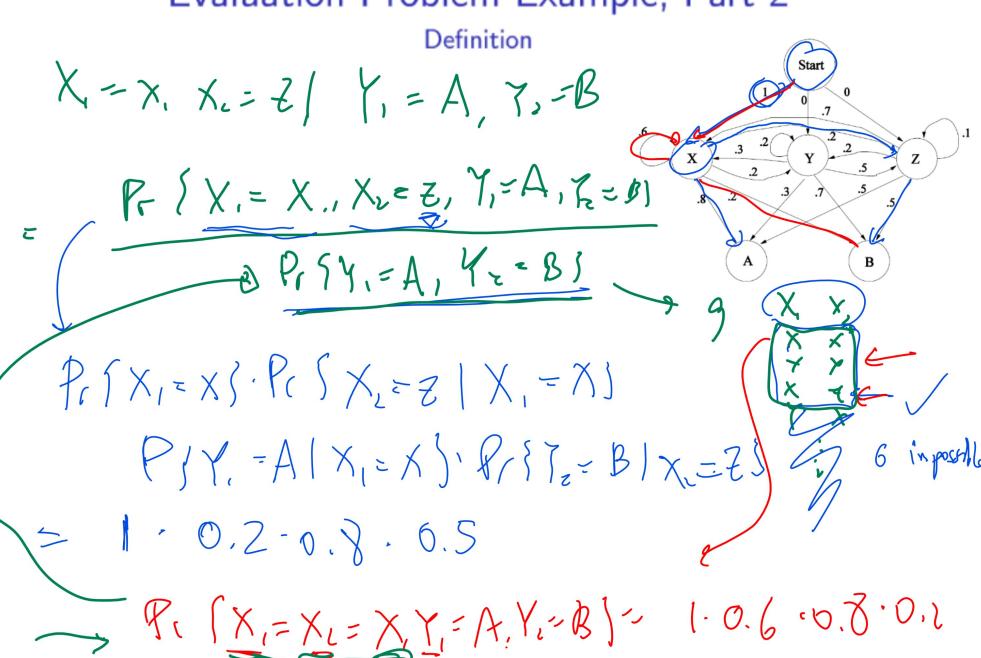
• The task is to find the probability  $\mathbb{P}\{y_1, y_2, ..., y_T | \pi, A, B\}$ .

$$\mathbb{P} \{y_1, y_2, ..., y_T | \pi, A, B\} 
= \sum_{x_1, x_2, ..., x_T} \mathbb{P} \{y_1, y_2, ..., y_T | x_1, x_2, ..., x_T\} \mathbb{P} \{x_1, x_2, ..., x_T\} 
= \sum_{x_1, x_2, ..., x_T} \left( \prod_{t=1}^T B_{y_t x_t} \right) \left( \pi_{x_1} \prod_{t=2}^T A_{x_{t-1} x_t} \right)$$

This is also called the Forward Algorithm.



- Fall 2018 Final Q28 and Q29
- Compute  $\mathbb{P}\left\{X_4=Y,X_5=Z|X_3=X\right\}$ .
  - Compute  $\mathbb{P}\{X_1 = X, X_2 = Z | Y_1 = A, Y_2 = B\}$ .



## **Decoding Problem**

- The task is to find  $x_1, x_2, ..., x_T$  that maximizes  $\mathbb{P}\{x_1, x_2, ..., x_T | y_1, y_2, ..., y_T, \pi, A, B\}.$
- Direct computation is too expensive.
- Dynamic programming needs to be used to save computation.
- This is called the Viterbi Algorithm.

## Viterbi Algorithm Value Function

#### Definition

 Define the value functions to keep track of the maximum probabilities at each time t and for each state k.

$$V_{1,k} = \mathbb{P} \{y_1 | X_1 = k\} \cdot \mathbb{P} \{X_1 = k\}$$

$$= B_{y_1 k} \pi_k$$

$$V_{t,k} = \max_{x} \mathbb{P} \{y_t | X_t = k\} \mathbb{P} \{X_t = k | X_{t-1} = x\} V_{1,k}$$

$$= \max_{x} B_{y_t k} A_{kx} V_{1,k}$$

# Viterbi Algorithm Policy Function

#### Definition

• Define the policy functions to keep track of the  $x_t$  that maximizes the value function.

policy 
$$_{t,k} = \arg \max_{x} B_{y_t k} A_{kx} V_{1,k}$$

 Given the policy functions, the most probable hidden sequence can be found easily.

$$x_T = \arg \max_{x} V_{T,x}$$
  
 $x_t = \operatorname{policy}_{t+1,x_{t+1}}$ 

# Dynamic Programming Diagram Definition

# Viterbi Algorithm Diagram

Initialize the hidden Markov model.

$$\pi \sim D(|X|), A \sim D(|X|, |X|), B \sim D(|Y|, |X|)$$

Perform the forward pass.

$$\alpha_{i,t} \text{ represents } \mathbb{P} \{y_1, y_2, ..., y_t, X_t = i | \pi, A, B\}$$

$$\alpha_{i,1} = \pi_i B_{y_1,i}$$

$$\alpha_{i,t+1} = \sum_{j=1}^{|X|} \alpha_{j,t} A_{ji} B_{y_{t+1}i}$$

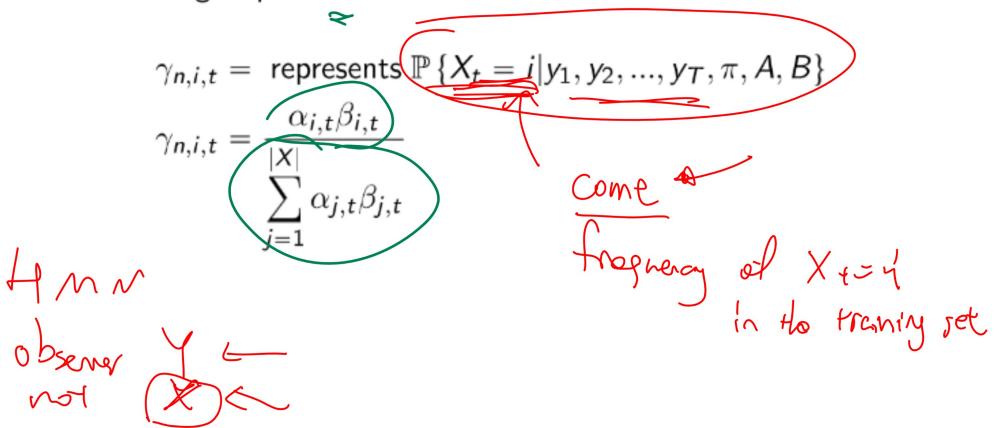
Perform the backward pass.

$$eta_{i,t}$$
 represents  $\mathbb{P}\left\{y_{t+1},y_{t+2},...,y_{T} \middle| X_{t}=i,\pi,A,B\right\}$ 

$$eta_{i,T}=1$$

$$eta_{i,t}=\sum_{j=1}^{|X|}A_{ij}B_{y_{t+1}j}\beta_{j,t+1}$$

 Define the conditional hidden state probabilities for each training sequence n.



 Define the conditional hidden state probabilities for each training sequence n.

$$\xi_{n,i,j,t} \text{ represents } \mathbb{P}\{X_{t} = j, X_{t+1} = j | y_{1}, y_{2}, ..., y_{T}, \pi, A, B\}$$

$$\xi_{n,i,j,t} = \frac{\alpha_{i,t}A_{ij}\beta_{j,t+1}B_{y_{t+1}j}}{\sum_{k=1}^{|X|}\sum_{l=1}^{|X|}\alpha_{k,t}A_{kl}\beta_{l,t+1}B_{y_{t+1}w}}$$

$$\mathbb{P}(\{W_{t}, W_{t-1}, W_$$

Update the model.

$$\pi'_{i} = \frac{\sum_{n=1}^{N} \gamma_{n,i,1}}{N}$$

$$A'_{ij} = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T-1} \xi_{n,i,j,t}}{\sum_{n=1}^{N} \sum_{t=1}^{T-1} \gamma_{n,i,t}}$$

$$\chi_{ij} = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T-1} \gamma_{n,i,t}}{\sum_{n=1}^{N} \sum_{t=1}^{T-1} \gamma_{n,i,t}}$$



Update the model, continued.

$$B'_{ij} \neq \frac{\sum_{n=1}^{N} \sum_{t=1}^{T} \mathbb{1}_{\{y_{n,t}=j\}} \gamma_{n,i,t}}{\sum_{n=1}^{N} \sum_{t=1}^{T} \gamma_{n,i,t}}$$

• Repeat until  $\pi, A, B$  converge.