CS540 Introduction to Artificial Intelligence Lecture 24

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

June 15, 2020

- The hidden units are used as the hidden states.
- They are related by the same function over time.

$$h_{t+1} = f(h_t, w)$$
 $h_{t+2} = f(h_{t+1}, w)$
 $h_{t+3} = f(h_{t+2}, w)$
...

Dynamic System with Input

Motivation

- The input units can also drive the dynamics of the system.
- They are still related by the same function over time.

$$h_{t+1} = f(h_t, x_{t+1}, w)$$

$$h_{t+2} = f(h_{t+1}, x_{t+2}, w)$$

$$h_{t+3} = f(h_{t+2}, x_{t+3}, w)$$

Dynamic System with Output

Motivation

The output units only depend on the hidden states.

$$y_{t+1} = f(h_{t+1})f(w)$$

 $y_{t+2} = f(h_{t+2})$
 $y_{t+3} = f(h_{t+3})$

Recurrent Neural Network Structure Diagram

Activation Functions

Definition

 The hidden layer activation function can be the tanh activation, and the output layer activation function can be the softmax function.

$$z_{t}^{(x)} = \underline{W}^{(x)}x_{t} + \underline{W}^{(h)}a_{t-1}^{(x)} + \underline{b}^{(x)}$$

$$a_{t}^{(x)} = \underline{g}\left(z_{t}^{(x)}\right), \underline{g}\left(\boxed{\cdot}\right) = \tanh\left(\boxed{\cdot}\right)$$

$$z_{t}^{(y)} = \underline{W}^{(y)}a^{(1,t)} + b^{(y)}$$

$$a_{t}^{(y)} = g\left(z_{t}^{(y)}\right), \underline{g}\left(\boxed{\cdot}\right) = \text{softmax}\left(\boxed{\cdot}\right)$$

Cost Functions

Definition

Cross entropy loss is used with softmax activation as usual.

$$C_t = H\left(y_t, a_t^{(y)}\right)$$

$$C = \sum_t C_t$$

Multiple Sequential Data Notations

Definition

- There could multiple sequences in the training set index by
 i = 1, 2, ..., n. For one training instance, at time t, there are
 m features.
- x_{ijt} is the feature j of instance i at time t (position t of the sequence).
- y_{ijt} is the output j of instance i at time t (position t of the sequence).

Multiple Sequential Activations Notations Definition

- $z_{ijt}^{(x)}$ denotes the linear part of instance i unit j at time t in the hidden layer.
- a_{ijt}^(x) denotes the activation of instance i unit j at time t in the hidden layer.
- $z_{ijt}^{(y)}$ denotes the linear part of instance i output j at time t in the output layer.
- $a_{ijt}^{(y)}$ denotes the activation of instance i output j at time t in the output layer

Multiple Sequential Weights Notations, Part 1 Definition

- There are weights and biases between the input layer and the hidden layer, between the hidden layer and the output layer, as in usual neural networks.
- $w_{j'j}^{(x)}, j' = 1, ..., m, j = 1, ..., m^{(h)}$ denotes the weight from input feature j' to hidden unit j.
- $b_j^{(x)}, j = 1, ..., m^{(h)}$ denotes the bias of hidden unit j.
- $w_{jj'}^{(y)}, j = 1, ..., m^{(h)}, j' = 1, ..., K$ denotes the weight from hidden unit j to output unit j'.
- $b_{j'}^{(y)}, j' = 1, ..., K$ denotes the bias of output unit j'.

Multiple Sequential Weights Notations, Part 2 Definition

- There are also weights between units within the hidden layer through time.
- $w_{j'j}^{(h)}, j, j' = 1, ..., m^{(h)}$ denotes the weight from hidden unit j' at time t to hidden unit j at time t + 1.

BackPropogation Through Time

Definition

 The gradient descent algorithm for recurrent neural networks is called BackPropogation Through Time (BPTT). The update procedure is the same as standard neural networks using the chain rule.

$$w = w - \alpha \frac{\partial C}{\partial w}$$
$$b = b - \alpha \frac{\partial C}{\partial b}$$

Unfolded Network Diagram

Backpropagation Diagram 1 Definition

Backpropagation Diagram 2

Backpropagation, Part 1 Definition

• The cost derivative is the same as softmax neural networks.

$$\begin{split} \frac{\partial C}{\partial C_t} &= 1\\ \frac{\partial C_t}{\partial z_{ijt}^{(y)}} &= z_{ijt}^{(y)} - \mathbb{1}_{\{y_{it} = j\}} \end{split}$$

Backpropagation, Part 2

Definition

 The other derivatives are similar to fully connected neural networks.

$$\frac{\partial z_{ij't}^{(y)}}{\partial a_{ijt}^{(x)}} = w_{jj'}^{(y)}$$

$$\frac{\partial z_{ij't}^{(y)}}{\partial w_{jj'}^{(y)}} = a_{ijt}^{(x)}$$

$$\frac{\partial z_{ij't}^{(y)}}{\partial b_{i'}^{(y)}} = 1$$

Backpropagation, Part 3

Definition

 The other derivatives are similar to fully connected neural networks.

$$\frac{\partial a_{ijt}^{(x)}}{\partial z_{ijt}^{(x)}} = g'\left(z_{ijt}^{(x)}\right) = 1 - \left(a_{ijt}^{(x)}\right)^{2}$$

$$\frac{\partial z_{ijt}^{(x)}}{\partial w_{j'j}^{(x)}} = x_{ij't}$$

$$\frac{\partial z_{ijt}^{(x)}}{\partial b_{j}^{(x)}} = 1$$

Backpropagation, Part 4

Definition

• The chain rule goes through time, so each gradient involves a long chain of the partial derivatives between $a_t^{(x)}$ and $a_{t-1}^{(x)}$ for t=1,2,...,T.

$$\begin{split} \frac{\partial a_{ijt}^{(x)}}{\partial z_{ijt}^{(x)}} &= 1 - \left(a_{ijt}^{(x)}\right)^2 \\ \frac{\partial z_{ijt}^{(x)}}{\partial a_{ij't-1}^{(x)}} &= w_{j'j}^{(h)} \end{split}$$

Vanishing and Exploding Gradient

- If the weights are small, the gradient through many layers will shrink exponentially. This is called the vanishing gradient problem.
- If the weights are large, the gradient through many layers will grow exponentially. This is called the exploding gradient problem.
- Fully connected and convolutional neural networks only have a few hidden layers, so vanishing and exploding gradient is not a problem in training those networks.
- In a recurrent neural network, if the sequences are long, the gradients can easily vanish or explode.

Long Term Memory Discussion

- It is also very hard to detect that the current output depends on an input from many time steps ago.
- Recurrent neural networks have difficulty dealing with long-range dependencies.

Long Short Term Memory

- Long Short Term Memory (LSTM) network adds more connected hidden units for memories controlled by gates. The activation functions used for these gates are usually logistic functions.
- An LSTM unit usually contains an input gate, an output gate, and a forget gate, to keep track of the dependencies in the input sequence.

Long Short Term Memory Diagram

Gated Recurrent Unit

- Gated Recurrent Unit (GRU) does something similar to an LSTM unit.
- A GRU contains input and forget gates, and does not contain an output gate.

Gated Recurrent Unit Diagram