CS540 Introduction to Artificial Intelligence Lecture 2

Young Wu
Based on lecture slides by Jerry Zhu and Yingyu Liang

May 23, 2019

Quiz (Participation)

Guess Real Face

- Which one is the real face?
- A: Left
- B: Right
- C: Don't choose this
- D: Don't choose this
- E: Don't choose this

Activation Function

Review

 The supervisered learning problem with activation function is the following.

$$(\hat{w}_{0}, \hat{w}_{1}, ..., \hat{w}_{m}, \hat{b}) = \arg\min_{w_{1}, ..., w_{m}, b} C$$
where $C = \frac{1}{2} \sum_{i=1}^{n} (a_{i} - y_{i})^{2}$
and $a_{i} = g(w_{1}x_{i1} + w_{2}x_{i2} + ... + w_{m}x_{im} + b)$

Sigmoid Activation Function

Motivation

 When the activation function g is the sigmoid function, the problem is called logistic regression.

$$g\left(\boxed{\cdot}\right) = \frac{1}{1 + \exp\left(-\boxed{\cdot}\right)}$$

• This g is also called the logistic function.

Sigmoid Function Diagram

Motivation

Cross Entropy Loss Function

Motivation

The cost function used for logistic regression is usually the log cost function.

$$C = -\sum_{i=1}^{n} (y_i \log (f(x_i)) + (1 - y_i) \log (1 - f(x_i)))$$

• It is also called the cross-entropy loss function.

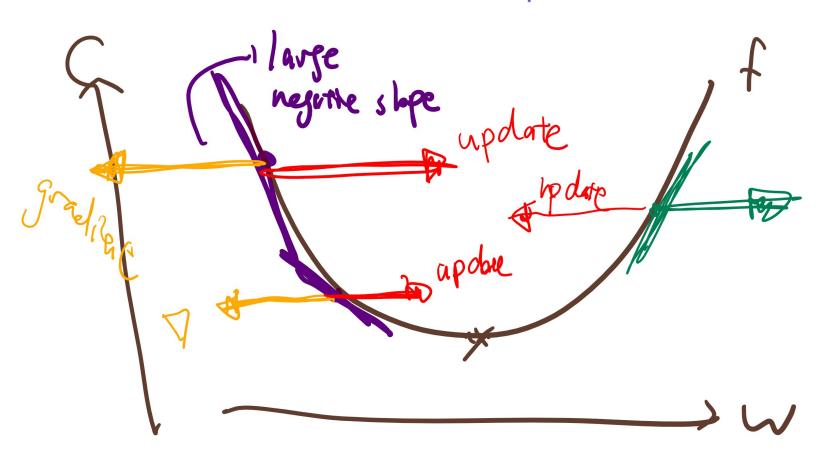
Logistic Regression

Description

- Initialize random weights.
- Evaluate the activation function.
- Compute the gradient of the cost function with respect to each weight and bias.
- Update the weights and biases using gradient descent.
- Repeat until convergent.

Optimization Diagram

Description



Gradient Descent Intuition Definition

- If a small increase in w_1 causes the distances from the points to the regression line to decrease: increase w_1 .
- If a small increase in w_1 causes the distances from the points to the regression line to increase: decrease w_1 .
- The change in distance due to change in w₁ is the derivative.
- The change in distance due to change in $\begin{bmatrix} w \\ b \end{bmatrix}$ is the gradient.

Gradient

Definition

The gradient is the vector of derivatives.

• The gradient of

$$f(x_i) = w^T x_i + b = w_1 x_{i1} + w_2 x_{i2} + ... + w_m x_{im} + b$$
 is:

$$\nabla_{w} f = \begin{bmatrix} \frac{\partial f}{\partial w_{1}} \\ \frac{\partial f}{\partial w_{2}} \\ \vdots \\ \frac{\partial f}{\partial w_{m}} \end{bmatrix} = \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{im} \end{bmatrix} = x_{i}$$

$$\nabla_b f = 1$$

Chain Rule

Definition

The gradient of

$$\nabla_{w} f = g' \left(w^{T} x_{i} + b \right) x_{i}$$
$$\nabla_{b} f = g' \left(w^{T} x_{i} + b \right)$$

• In particular, for the logistic function g:

$$g\left(\overline{\cdot}\right) = \frac{1}{1 + \exp\left(-\overline{\cdot}\right)}$$
$$g'\left(\overline{\cdot}\right) = g\left(\overline{\cdot}\right)\left(1 - g\left(\overline{\cdot}\right)\right)$$

Logistic Gradient Derivation

Definition

$$g(x) = \frac{1}{1 + e^{-x}} = \frac{1}{1 + e^{-x}}$$

$$g'(x) = \frac{1}{1 + e^{-x}} \cdot \frac{1}{1 + e^{-x}$$

Gradient Descent Step

Definition

• For logistic regression, use chain rule twice.

$$w = w - \alpha \sum_{i=1}^{n} (a_i - y_i) x_i$$

$$b = b - \alpha \sum_{i=1}^{n} (a_i - y_i)$$

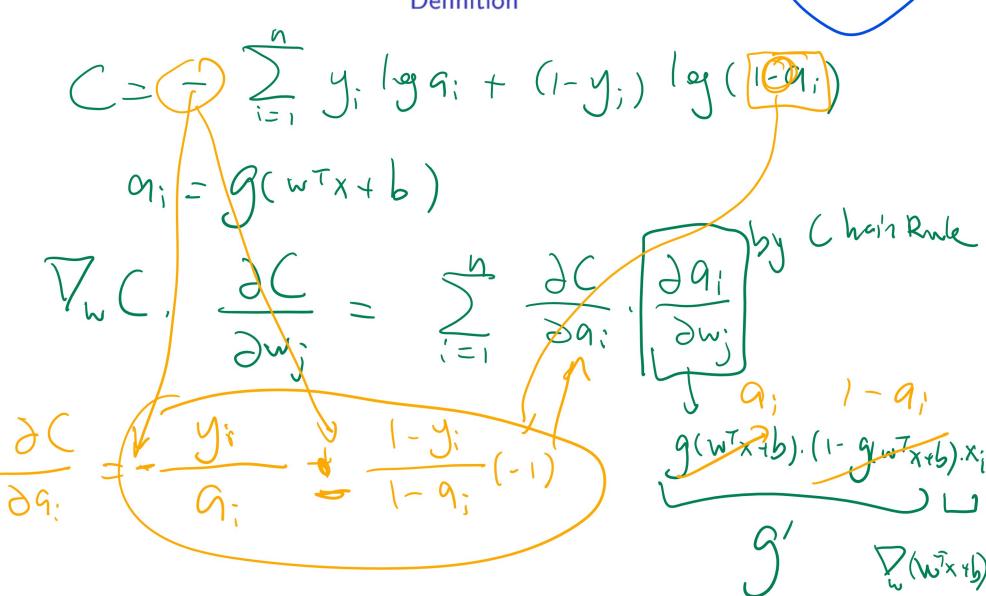
$$a_i = g \left(w^T x_i \right), g \left(\cdot \right) = \frac{1}{1 + \exp\left(- \cdot \right)}$$

• α is the learning rate. It is the step size for each step of gradient descent.

alway correge.

Gradient Descent Derivation

Definition



Learning Rate Diagram

Definition
$$\begin{cases}
-\frac{y_i}{q_i} + \frac{1-y_i}{1-q_i} & g_i & (1-q_i) \cdot \chi_i \\
-\frac{y_i}{q_i} + \frac{1-y_i}{1-q_i} & g_i & (1-q_i) \cdot \chi_i
\end{cases}$$

$$\begin{cases}
-\frac{y_i}{q_i} + \frac{1-y_i}{1-q_i} & g_i & (1-q_i) \cdot \chi_i
\end{cases}$$

$$\begin{cases}
-\frac{y_i}{q_i} + \frac{1-y_i}{1-q_i} & g_i & (1-q_i) \cdot \chi_i
\end{cases}$$

$$\begin{cases}
-\frac{y_i}{q_i} - \frac{y_i}{q_i} & \chi_i
\end{cases}$$

Gradient Descent

Quiz (Graded)

 What is the gradient descent step for w if the objective (cost) function is the squared error?

$$\sum_{i=1}^{n} \left(a_i - y_i \right)^2$$

• A:
$$w = w - \alpha \sum (a_i - y_i) x_i$$

• B:
$$w = w - \alpha \sum (a_i - y_i) a_i x_i$$

• C:
$$w = w - \alpha \sum_{i} (a_i - y_i) (1 - a_i) x_i$$

p D:
$$w = w - \alpha \sum_{i} (a_i - y_i) a_i (1 - a_i) x_i$$

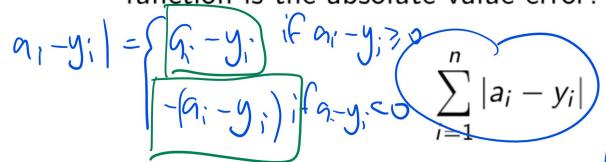
E: None of the above

Gradient Descent, Another One

Quiz (Graded)

What is the gradient descent step for w if the objective (cost)

function is the absolute value error?

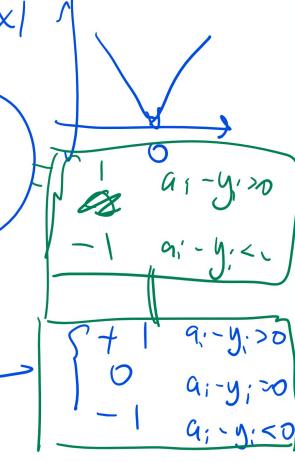


• B:
$$w = w - \alpha \sum |a_i - y_i| a_i (1 - a_i) x_i$$

• C:
$$w = w - \alpha \sum_{\{a_i - y_i > 0\}} a_i (1 - a_i) x_i$$

D:
$$w = w - \alpha \sum \operatorname{sign}(a_i - y_i) a_i (1 - a_i) x_i$$

E: None of the above



Logistic Regression, Part 1 Algorithm

- Inputs: instances: $\{x_i\}_{i=1}^n$ and $\{y_i\}_{i=1}^n$
- Outputs: weights and biases: $w_1, w_2, ..., w_m$ and b
- Initialize the weights.

$$w_1, ..., w_m, b \sim \text{Unif } [0, 1]$$

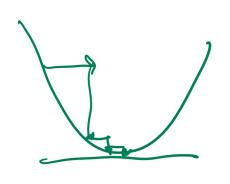
Evaluate the activation function.

$$a_i = g\left(w^T x_i\right), g\left(\boxed{\cdot}\right) = \frac{1}{1 + \exp\left(-\boxed{\cdot}\right)}$$

Logistic Regression, Part 2

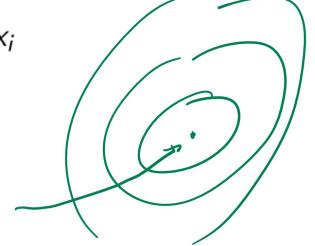
Algorithm

Update the weights and bias using gradient descent.



$$w = w - \alpha \sum_{i=1}^{n} (a_i - y_i) x_i$$

$$b = b - \alpha \sum_{i=1}^{n} (a_i - y_i)$$



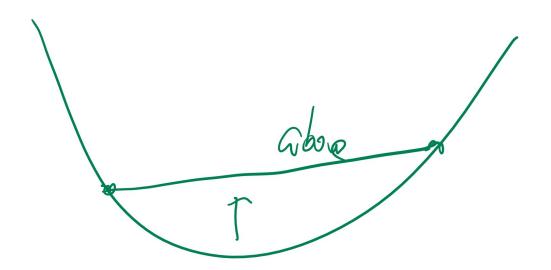
Repeat the process until convergent.

$$|C - C|^{\mathsf{prev}}| < \varepsilon$$

Other Non-linear Activation Function

- Activation function: $g(\cdot) = \tanh(\cdot) = \frac{e^{\cdot} e^{\cdot}}{e^{\cdot} + e^{\cdot}}$
- Activation function: $g(\cdot) = \arctan(\cdot)$
- Activation function (rectified linear unit): $g\left(\boxdot\right) = \boxdot \mathbb{1}_{\left\{ \boxdot \geqslant 0 \right\}}$
- All these functions lead to objective functions that are convex and differentiable. Gradient descent can be used.

Convexity Diagram



Convexity

- If a function is convex, gradient descent with any initialization will converge to the global minimum.
- If a function is not convex, gradient descent with different initializations may converge to different local minima.
- A twice differentiable function is convex if and only its second derivative is non-negative.
- In the multivariate case, it means the Hessian matrix is positive semidefinite.

Positive Semidefinite

Discussion

• Hessian matrix is the matrix of second derivatives:

- A matrix H is positive semidefinite if $x^T H x \ge 0 \ \forall \ x \in \mathbb{R}^n$.
- A symmetric matrix is positive semidefinite if and only if all of its eigenvalues are non-negative.

Eigenvalues

Quiz (Participation)

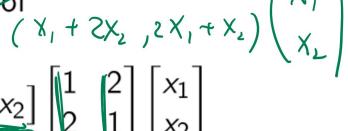
- Eigenvalue?
- A: Never heard of it before.
- B: Heard it once in Avengers Endgame.
- C: Heard it before in other courses.
- D: Learned in other courses before completely forgot.
- E: Still remember how to compute eigenvalues.

Convex Functions

X + 2 x 1 x 2 + 2 x 1 x 2 + x

Quiz (Participation)

• What is the Hessian (second derivative) of

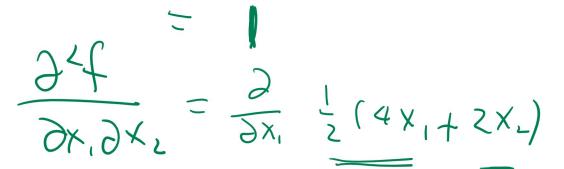


• A:
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\frac{9x_{5}^{1}}{3t} = \frac{9x^{1}}{3}$$

B: Do not choose this.

• C:
$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$



• D: Do not choose this.

• E:
$$\begin{bmatrix} 1 & 4 \\ 4 & 1 \end{bmatrix}$$

Definiteness

Quiz (Participation)

Which ones (two) of the following are the eigenvalues of

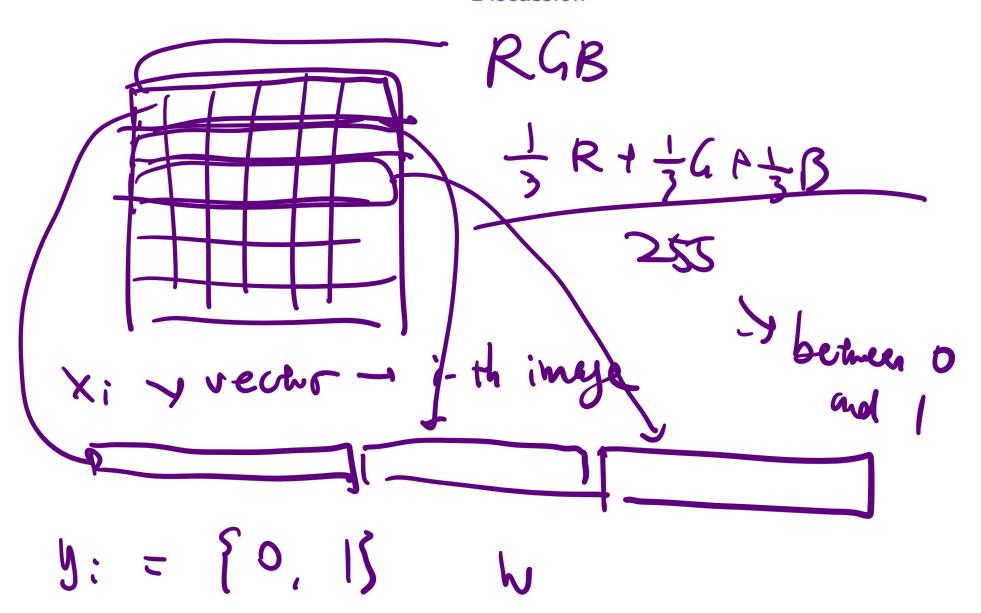
$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
? Two eigenvectors are $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

- A: 0
- B: 1
- *C* 0
- C: 2
- **å** D: 3
 - E: 4

Image as Input

- Simplest feature vector for an image is the flattened pixel intensities.
- One way to compute pixel intensity is to use the average of the RGB values divided by 255.
- Pixel intensity of each pixel is between 0 and 1.
- An n_w pixel by n_h pixel image then can be flattened into a $m = n_w n_h$ dimensional input feature vector x.

Flattened Feature Vector Diagram



AND Operator Data

Quiz (Particpation)

Sample data for AND

<i>x</i> ₁	<i>X</i> ₂	У
0	0	0
0	1	0
1	0	0
1	1	1

Learning AND Operator

Quiz (Participation)

- Which one of the following is AND?
- A: $\hat{y} = \mathbb{1}_{\{1x_1 + 1x_2 1.5 \ge 0\}}$
- B: $\hat{y} = \mathbb{1}_{\{1x_1 + 1x_2 0.5 \ge 0\}}$
- C: $\hat{y} = \mathbb{1}_{\{-1x_1+0.5 \ge 0\}}$
- D: $\hat{y} = \mathbb{1}_{\{-1x_1 1x_2 + 0.5 \ge 0\}}$
- E: None of the above

OR Operator Data

Quiz (Graded)

Sample data for OR

<i>x</i> ₁	<i>x</i> ₂	У
0	0	0
0	1	1
1	0	1
1	1	1

Learning OR Operator

Quiz (Graded)

- Which one of the following is OR?
- A: $\hat{y} = \mathbb{1}_{\{1x_1 + 1x_2 1.5 \ge 0\}}$
- B: $\hat{y} = \mathbb{1}_{\{1x_1 + 1x_2 0.5 \ge 0\}}$
- C: $\hat{y} = \mathbb{1}_{\{-1x_1+0.5 \ge 0\}}$
- D: $\hat{y} = \mathbb{1}_{\{-1x_1 1x_2 + 0.5 \ge 0\}}$
- E: None of the above

XOR Data

Quiz (Graded)

Sample data for XOR

<i>x</i> ₁	<i>X</i> ₂	У
0	0	0
0	1	1
1	0	1
1	1	0

Learning XOR Operator

Quiz (Graded)

- Which one of the following is XOR?
- A: $\hat{y} = \mathbb{1}_{\{1x_1 + 1x_2 1.5 \ge 0\}}$
- B: $\hat{y} = \mathbb{1}_{\{1x_1 + 1x_2 0.5 \ge 0\}}$
- C: $\hat{y} = \mathbb{1}_{\{-1x_1+0.5 \ge 0\}}$
- D: $\hat{y} = \mathbb{1}_{\{-1x_1 1x_2 + 0.5 \ge 0\}}$
- E: None of the above