CS540 Introduction to Artificial Intelligence Lecture 2

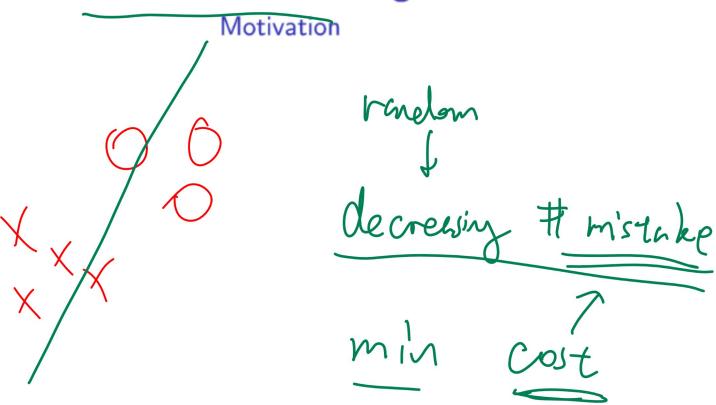
Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

May 18, 2020

•0000000

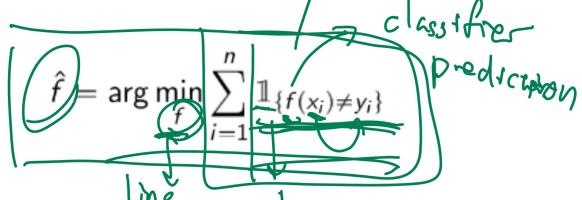
Loss Function Diagram



Zero-One Loss Function

Motivation

• An objective function is needed to select the "best" \hat{f} . An example is the zero-one loss.



- arg min objective (f) outputs the function that minimizes the objective.
- The objective function is called the cost function (or the loss function), and the objective is to minimize the cost.

Squared Loss Function

Motivation

- Zero-one loss counts the number of mistakes made by the classifier. The best classifier is the one that makes the fewest mistakes.
- Another example is the squared distance between the predicted and the actual y value:

$$\hat{f} = \arg\min_{f} \frac{1}{2} \sum_{i=1}^{n} (f(x_i) - y_i)^2$$

$$f(x_i) \quad y_i \quad \text{sq} \quad x_i$$

Loss Functions Equivalence

Quiz

 Which ones (multiple) of the following functions are equivalent to the squared error for binary classification?

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

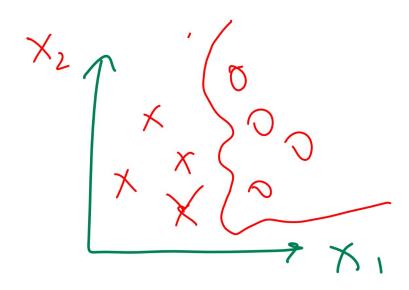
$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

$$C = \sum_{i=1}^{n} (f(x_i) - y_i)^2, y_i \in \{0, 1\}$$

Function Space Diagram

Motivation



Hypothesis Space

Motivation -

- There are too many functions to choose from.
- There should be a smaller set of functions to choose \hat{f} from.

$$\hat{f} = \arg\min_{f \in \mathcal{H}} \frac{1}{2} \sum_{i=1}^{n} (f(x_i) - y_i)^2$$

• The set \mathcal{H} is called the hypothesis space.

Activation Function

Motivation

• Suppose \mathcal{H} is the set of functions that are compositions between another function g and linear functions.

Linear Threshold Unit

 One simple choice is to use the step function as the activation function:

$$g\left(\boxed{\cdot}\right) = 1_{\left\{\boxed{\cdot}\right\} = 0} = \begin{cases} 1 & \text{if } \boxed{\cdot} \geqslant 0 \\ 0 & \text{if } \boxed{\cdot} < 0 \end{cases}$$

This activation function is called linear threshold unit (LTU).

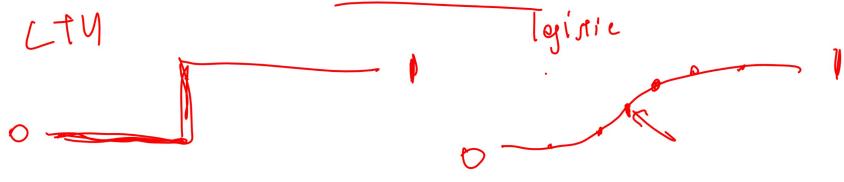
Sigmoid Activation Function

Motivation

 When the activation function g is the sigmoid function, the problem is called logistic regression.

$$g\left(\boxed{\cdot}\right) = \frac{1}{1 + \exp\left(-\boxed{\cdot}\right)}$$

This g is also called the logistic function.



Sigmoid Function Diagram

Motivation

Cross Entropy Loss Function

Motivation

 The cost function used for logistic regression is usually the log cost function.

$$C(f) = -\sum_{i=1}^{n} (y_i \log (f(x_i)) + (1 - y_i) \log (1 - f(x_i)))$$

• It is also called the cross-entropy loss function.

tike country

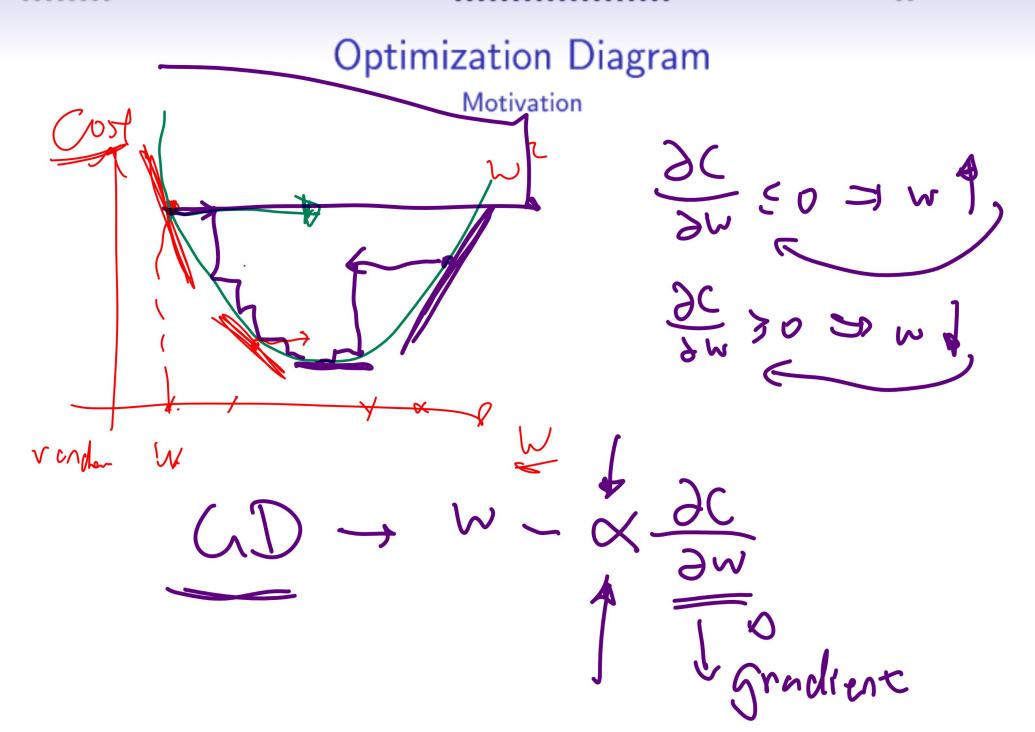
Logistic Regression Objective

Motivation

 The logistic regression problem can be summarized as the following.

$$(\hat{w}, \hat{b}) = \arg\min_{w,b} - \sum_{i=1}^{n} (y_i \log(a_i) + (1 - y_i) \log(1 - a_i))$$
where $a_i = \frac{1}{1 + \exp(-z_i)}$ and $z_i = w^T x_i + b$

$$(i \land e_{a_i}) = \lim_{x \to a_i} (y_i \log(a_i) + (1 - y_i) \log(1 - a_i))$$



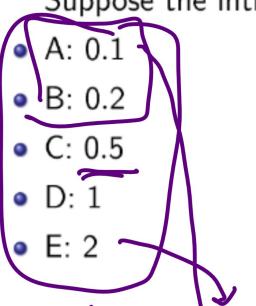
Learning Rate Demo

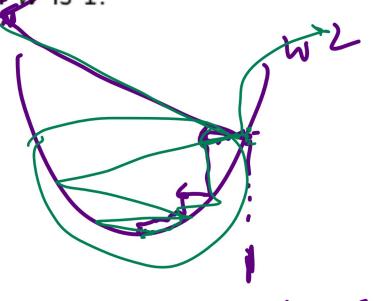
Motivation

Simple Gradient Descent

Quiz

• For which (multiple) of the following learning rates (α) would gradient descent converge to the minimum of $(w) = w^2$. Suppose the intial random w is 1.





Simple Gradient Descent, Answer

Simple Gradient Descent, Another One

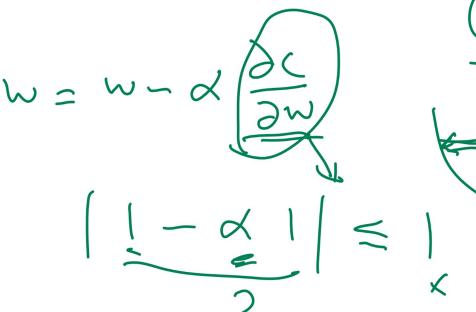
For which (multiple) of the following learning rates (α) would gradient descent converge to the minimum of $(w) \neq \frac{1}{2}w^2$. Suppose the initial random w is 1.

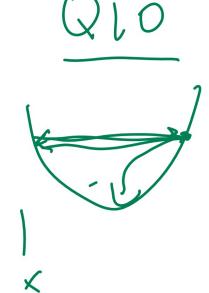
• A: 0.1

• C: 0.5

D: 1

E: 2





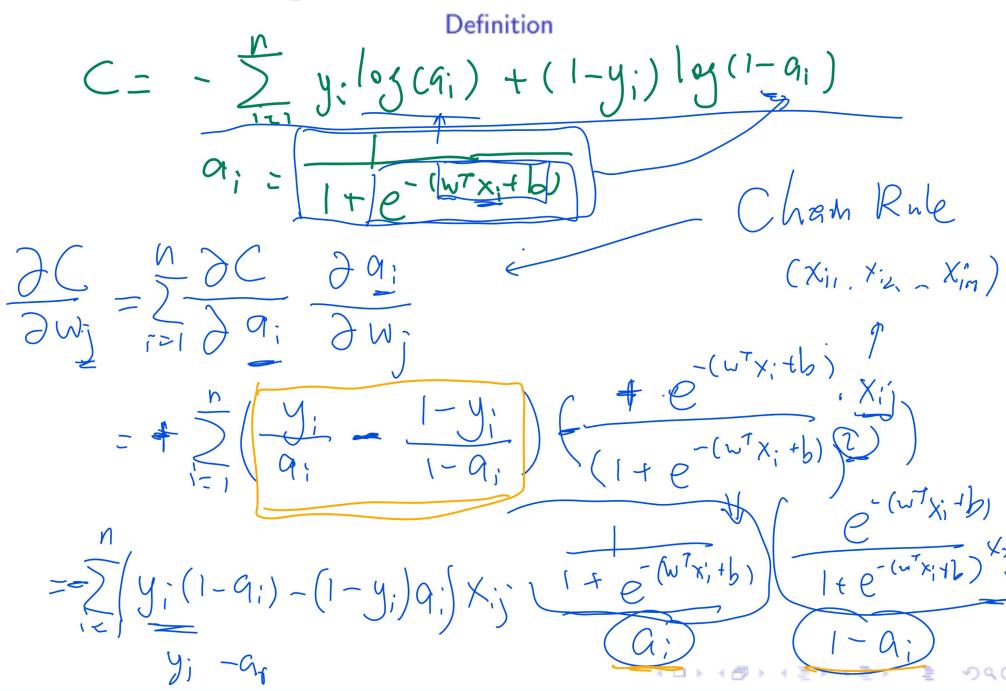
Simple Gradient Descent, Another One, Answer

Logistic Regression

Description

- Initialize random weights.
- Evaluate the activation function.
- Compute the gradient of the cost function with respect to each weight and bias.
- Update the weights and biases using gradient descent.
- Repeat until convergent.

Logistic Gradient Derivation 1



Logistic Gradient Derivation 2

Definition

Gradient Descent Step

Definition

For logistic regression, use chain rule twice.

$$w = w - \alpha \sum_{i=1}^{n} (a_i - y_i) x_i$$

$$b = b - \alpha \sum_{i=1}^{n} (a_i - y_i)$$

$$a_i = g(w^T x_i + b), g(\cdot) = \frac{1}{1 + \exp(-\cdot)}$$

 α is the learning rate. It is the step size for each step of gradient descent.

Perceptron Algorithm

Definition

Update weights using the following rule.

$$w = w - \alpha (a_i - y_i) x_i$$

$$b = b - \alpha (a_i - y_i)$$

$$a_i = \mathbb{1}_{\{w^T x_i + b \ge 0\}}$$

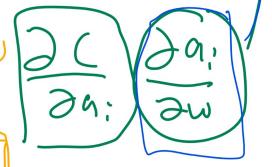
Gradient Descent

Quiz

What is the gradient descent step for w if the objective (cost) function is the squared error?

$$C = \frac{1}{2} \sum_{i=1}^{n} (a_i - y_i)^2, a_i \neq g(w^T x_i + b), g'(z) = z \cdot (1 - z)$$

- A: $w = w \alpha \sum_{i} (a_i y_i)$
- B: $w = w \alpha \sum (a_i y_i) x_i$ cross entropy
- C: $w = w \alpha \sum (a_i y_i) a_i x_i$
- D: $w = w \alpha \sum (a_i y_i) (1 a_i) x_i$
- E: $w = w \alpha \sum_{i} (a_i y_i) a_i (1 a_i) x_i$



Gradient Descent, Answer

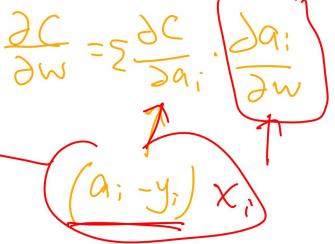
Gradient Descent, Another One

• What is the gradient descent step for w if the activation funtion is the identity function?

In ear

Legression
$$C = \frac{1}{2} \sum_{i=1}^{n} (a_i - y_i)^2, \underline{a_i} = \underline{w}^T x_i + b$$

- A: $w = w \alpha \sum (a_i y_i)$
 - B: $w = w \alpha \sum (a_i y_i) x_i$
 - C: $w = w \alpha \sum (a_i y_i) a_i x_i$
 - D: $w = w \alpha \sum (a_i y_i) (1 a_i) x_i$
 - E: $w = w \alpha \sum (a_i y_i) a_i (1 a_i) x_i$



Gradient Descent, Another One, Answer

Other Non-linear Activation Function

Discussion

- Activation function: $g(\cdot) = \tanh(\cdot) = \frac{e^{\cdot} e^{-\cdot}}{e^{\cdot} + e^{-\cdot}}$
- Activation function: $g(\overline{\cdot}) = \arctan(\overline{\cdot})$
- Activation function (rectified linear unit): $g(\underline{\cdot}) = \underline{\cdot} \mathbb{1}_{\{\underline{\cdot} \ge 0\}}$
- All these functions lead to objective functions that are convex and differentiable (almost everywhere). Gradient descent can be used.

Convexity Diagram

Discussion