CS540 Introduction to Artificial Intelligence Lecture 3

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

June 4, 2020

Test Quiz

Socrative Room

CS 540 C

B: Choose this.

• C:

A:

D:

E:

@ wisc, edu

1 log M ID

message "anestions if you have questions,

Single Layer Perceptron

Motivation

LTU Perception Logistic Perception

- Perceptrons can only learn linear decision boundaries.
- Many problems have non-linear boundaries.
- One solution is to connect perceptrons to form a network.

Decision Boundary Diagram

Motivation

Multi Layer Perceptron Motivation

• The output of a perceptron can be the input of another.

$$a = g\left(w^{T}x + b\right)$$

$$a' = g\left(w'^{T}a + b'\right)$$

$$a'' = g\left(w''^{T}a' + b''\right)$$

$$\hat{y} = \mathbb{1}_{\{a'' > 0\}}$$

Neural Network Biology Motivation

- Human brain: 100, 000, 000, 000 neurons.
- Each neuron receives input from 1,000 others.
- An impulse can either increase or decrease the possibility of nerve pulse firing.
- If sufficiently strong, a nerve pulse is generated.
- The pulse forms the input to other neurons.

Theory of Neural Network

- In theory:
- 1 Hidden-layer with enough hidden units can represent any continuous function of the inputs with arbitrary accuracy.
- 2 Hidden-layer can represent discontinuous functions.
 - In practice:
- AlexNet: 8 layers.
- GoogLeNet: 27 layers (or 22 + pooling).
- ResNet: 152 layers.

Gradient Descent

Motivation

The derivatives are more difficult to compute.

- The problem is no longer convex. A local minimum is longer guaranteed to be a global minimum.
 - Need to use chain rule between layers called backpropagation.

Backpropagation

Description

(Gi - yi)

Initialize random weights.

- (Feedforward Step) Evaluate the activation functions.
- (Backpropagation Step) Compute the gradient of the cost function with respect to each weight and bias using the chain rule.
- Update the weights and biases using gradient descent.
- Repeat until convergent.

Two Layer Neural Network Weights Diagram 1

Two Layer Neural Network Weights Diagram 2

Two Layer Neural Network Weights Diagram 3

Gradient Step, Combined

Definition

• Put everything back into the chain rule formula. (Please check for typos!)

$$\int \frac{\partial C}{\partial w_{j'j}^{(1)}} = \sum_{i=1}^{n} (a_i - y_i) a_i (1 - a_i) w_j^{(2)} a_{ij}^{(1)} \left(1 - a_{ij}^{(1)}\right) x_{ij'}$$

$$\frac{\partial C}{\partial b_j^{(1)}} = \sum_{i=1}^{n} (a_i - y_i) a_i (1 - a_i) w_j^{(2)} a_{ij}^{(1)} \left(1 - a_{ij}^{(1)}\right)$$

$$\frac{\partial C}{\partial w_j^{(2)}} = \sum_{i=1}^{n} (a_i - y_i) a_i (1 - a_i) a_{ij}^{(1)}$$

$$\frac{\partial C}{\partial b^{(2)}} = \sum_{i=1}^{n} (a_i - y_i) a_i (1 - a_i)$$

Gradient Descent Step

Definition

 The gradient descent step is the same as the one for logistic regression.

$$w_{j}^{(2)} \leftarrow w_{j}^{(2)} - \alpha \frac{\partial C}{\partial w_{j}^{(2)}}, j = 1, 2,, m^{(1)}$$

$$b^{(2)} \leftarrow b^{(2)} - \alpha \frac{\partial C}{\partial b^{(2)}},$$

$$w_{j'j}^{(1)} \leftarrow w_{j'j}^{(1)} - \alpha \frac{\partial C}{\partial w_{j'j}^{(1)}}, j' = 1, 2,, m, j = 1, 2,, m^{(1)}$$

$$b_{j}^{(1)} \leftarrow b_{j}^{(1)} - \alpha \frac{\partial C}{\partial b_{j}^{(1)}}, j = 1, 2,, m^{(1)}$$

AND Operator Data

Sample data for AND

<i>x</i> ₁	<i>X</i> ₂	У
0	0	0
0	1	0
1	0	0
1	1	1

Learning AND Operator

Quiz

LTU perceptor

• Which one of the following is AND?

$$A: \hat{V} = \mathbb{1}_{\{1x_1 + 1x_2 - 1.5 \ge 0\}}$$

- B: $\hat{y} = \mathbb{1}_{\{1x_1 + 1x_2 0.5 \ge 0\}}$
- C: $\hat{y} = \mathbb{1}_{\{-1x_1+0.5 \ge 0\}}$
- D: $\hat{y} = \mathbb{1}_{\{-1x_1 1x_2 + 0.5 \ge 0\}}$
- E: None of the above

$$0 + 0 - 1.5 = 0.5 = 0$$

OR Operator Data

Sample data for OR

x_1	<i>X</i> ₂	У
0	0	0
0	1	1
1	0	1
1	1	1

Learning OR Operator Quiz

• Which one of the following is OR?

•
$$\hat{y} = \mathbb{1}_{\{1x_1 + 1x_2 - 1.5 \ge 0\}}$$
• B: $\hat{y} = \mathbb{1}_{\{1x_1 + 1x_2 - 0.5 \ge 0\}}$

$$\hat{y} = \mathbb{1}_{\{1x_1+1x_2-0.5 \ge 0\}}$$

•
$$\hat{y} = \mathbb{1}_{\{-1x_1 + 0.5 \ge 0\}}$$

•
$$\hat{y} = \mathbb{1}_{\{-1x_1 + 0.5 \ge 0\}}$$

• D: $\hat{y} = \mathbb{1}_{\{-1x_1 - 1x_2 + 0.5 \ge 0\}}$

E: None of the above

XOR Data

Sample data for XOR

x_1	<i>X</i> ₂	У
0	0	0
0	1	1
1	0	1
1	1	0

Learning XOR Operator

Quiz

0.3

• Which one of the following is XOR?

$$A: \hat{y} = \mathbb{1}_{\{1x_1 + 1x_2 - 1.5 \ge 0\}}$$

• B:
$$\hat{y} = \mathbb{1}_{\{1x_1 + 1x_2 - 0.5 \ge 0\}}$$

•
$$\hat{y} = \mathbb{1}_{\{-1x_1+0.5 \ge 0\}}$$

• D:
$$\hat{y} = \mathbb{1}_{\{-1x_1 - 1x_2 + 0.5 \ge 0\}}$$

Learning XOR Operator Network

Learning XOR Operator Network Diagram

Another XOR Operator Network 1 Quiz

• Given $w_{11}^{(1)}=1, w_{12}^{(1)}=-10, w_{21}^{(1)}=-1$ and $b_1^{(1)}=-0.5, b_2^{(1)}=-5$ and $w_1^{(2)}=1, w_1^{(2)}=1, b^{(2)}=-0.5$. Which of the following value for $w_{22}^{(1)}$ does NOT make the network compute XOR?

A: 5
B: 7.5
C: 10
D: 12.5
E: 15

Another XOR Operator Network 2 Quiz b1= (-0,5) • A: 5 🍅 B: 7.5 XOR » C: 10 D: 12.5 I swipn th

Three Layer Neural Network Weights Diagram 1

- Which of the following is correct for a three layer network?
 Assume there are 10 units in the first layer and 5 units in the second layer.
- Choices on the next page.

Three Layer Neural Network Backpropogation

Quiz

$$\bigcirc A: \frac{\partial C}{\partial w_{12}^{(1)}} = \sum_{j'=1}^{10} \sum_{j=1}^{5} \frac{\partial C}{\partial a_{j}^{(2)}} \frac{\partial a_{j'}^{(2)}}{\partial a_{j'}^{(1)}} \frac{\partial a_{j'}^{(1)}}{\partial w_{1j'}^{(1)}}$$

• B:
$$\frac{\partial C}{\partial w_{12}^{(1)}} = \sum_{j=1}^{5} \frac{\partial C}{\partial a_{j}^{(2)}} \frac{\partial a_{j}^{(2)}}{\partial a_{1}^{(1)}} \frac{\partial a_{1}^{(1)}}{\partial w_{12}^{(1)}}$$

C:
$$\frac{\partial C}{\partial w_{12}^{(1)}} = \sum_{j=1}^{5} \frac{\partial C}{\partial a_{j}^{(2)}} \frac{\partial a_{j}^{(2)}}{\partial a_{2}^{(1)}} \frac{\partial a_{2}^{(1)}}{\partial w_{12}^{(1)}}$$

• D:
$$\frac{\partial C}{\partial w_{12}^{(1)}} = \frac{\partial C}{\partial a_1^{(2)}} \frac{\partial a_1^{(2)}}{\partial a_1^{(1)}} \frac{\partial a_1^{(1)}}{\partial w_{12}^{(1)}}$$

• E:
$$\frac{\partial C}{\partial w_{12}^{(1)}} = \frac{\partial C}{\partial a_2^{(2)}} \frac{\partial a_2^{(2)}}{\partial a_2^{(1)}} \frac{\partial a_2^{(1)}}{\partial w_{12}^{(1)}}$$

10 mils in layer 1 5 mils in layer 2 1 instance.

layer 1 mit 2