CS540 Introduction to Artificial Intelligence Lecture 3

Young Wu Based on lecture slides by Jerry Zhu and Yingyu Liang

May 24, 2019

AND Operator Data

Quiz (Particpation)

Sample data for AND

<i>x</i> ₁	<i>X</i> ₂	У
0	0	0
0	1	0
1	0	0
1	1	1

Learning AND Operator

Quiz (Particpation)

• A:
$$\hat{y} = 1_{\{1x_1+1x_2-1.5 \ge 0\}}$$

• B:
$$\hat{y} = \mathbb{1}_{\{1x_1+1x_2-0.5\geqslant 0\}}$$

• C:
$$\hat{y} = \mathbb{1}_{\{-1x_1+0.5 \ge 0\}}$$

• D:
$$\hat{y} = \mathbb{1}_{\{-1x_1-1x_2+0.5 \ge 0\}}$$

E: None of the above

OR Operator Data

Quiz (Graded)

Sample data for OR

<i>x</i> ₁	<i>x</i> ₂	у
0	0	0
0	1	1
1	0	1
1	1	1

Learning OR Operator

Quiz (Graded)

• Which one of the following is OR?

• A:
$$\hat{y} = \mathbb{1}_{\{1x_1+1x_2-1.5 \ge 0\}}$$

• B:
$$\hat{y} = \mathbb{1}_{\{1x_1+1x_2-0.5\geqslant 0\}}$$

• C:
$$\hat{y} = \mathbb{1}_{\{-1x_1+0.5 \geqslant 0\}}$$

• D:
$$\hat{y} = \mathbb{1}_{\{-1x_1-1x_2+0.5 \ge 0\}}$$

E: None of the above

XOR Data

Quiz (Graded)

Sample data for XOR

<i>x</i> ₁	<i>X</i> ₂	У
0	0	0
0	1	1
1	0	1
1	1	0

Learning XOR Operator

Quiz (Graded)

• Which one of the following is XOR?

• A:
$$\hat{y} = \mathbb{1}_{\{1x_1+1x_2-1.5 \ge 0\}}$$

• B:
$$\hat{y} = \mathbb{1}_{\{1x_1+1x_2-0.5\geqslant 0\}}$$

• C:
$$\hat{y} = \mathbb{1}_{\{-1x_1+0.5 \geqslant 0\}}$$

• D:
$$\hat{y} = \mathbb{1}_{\{-1x_1 - 1x_2 + 0.5 \ge 0\}}$$

✓ • E: None of the above

Single Layer Perceptron

- Perceptrons can only learn linear decision boundaries.
- Many problems have non-linear boundaries.
- One solution is to connect perceptrons to form a network.

Multi Layer Perceptron

Motivation

• The output of a perceptron can be the input of another.

$$a = g\left(w^{T}x + b\right)$$

$$a' = g\left(w'^{T}a + b'\right)$$

$$a'' = g\left(w''^{T}a' + b''\right)$$

$$\hat{y} = \mathbb{1}_{\{a'' > 0\}}$$

Learning XOR Operator, Part 1

Motivation

XOR cannot be modelled by a single perceptron.

<i>x</i> ₁	<i>X</i> ₂	У
0	0	0
0	1	1
1	0	1
1	1	0

Learning XOR Operator, Part 2

- OR, AND, NOT AND can be modeled by perceptrons.
- If the outputs of OR and NOT AND is used as inputs for AND, then the output of the network will be XOR.

XOR Neural Network Diagram

Multi-Layer Neural Network Diagram

Neural Network Biology Motivation

- Human brain: 100, 000, 000, 000 neurons
- Each neuron receives input from 1,000 others
- An impulse can either increase or decrease the possibility of nerve pulse firing
- If sufficiently strong, a nerve pulse is generated
- The pulse forms the input to other neurons

Theory of Neural Network

- In theory:
- 1 Hidden-layer with enough hidden units can represent any continuous function of the inputs with arbitrary accuracy
- 2 Hidden-layer can represent discontinuous functions
 - In practice:
- AlexNet: 8 layers
- GoogLeNet: 27 layers
- ResNet: 152 layers

Gradient Descent

- The derivatives are more difficult to compute.
- The problem is no longer convex. A local minimum is longer guaranteed to be a global minimum.
- Need to use chain rule between layers called backpropagation.

Backpropagation

Description

- Initialize random weights.
- (Feedforward Step) Evaluate the activation functions.
- (Backpropagation Step) Compute the gradient of the cost function with respect to each weight and bias using the chain rule.
- Update the weights and biases using gradient descent.
- Repeat until convergent.

Cost Function

Definition

 For simplicity, assume there are only two layers (one hidden layer), and g is the sigmoid function for this lecture.

$$g'(z) = g(z)(1 - g(z))$$

 Let the output in the second layer be a_i for instance x_i, then cost function is same squared error,

$$C = \frac{1}{2} \sum_{i=1}^{n} (y_i - a_i)^2$$

Interal Activations

Definition

• Let the output in the first layer be $a_{ij}^{(1)}, j = 1, 2, ..., m^{(1)}$.

$$a_{i} = g(z_{i})$$

$$z_{i} = \sum_{j=1}^{m^{(1)}} a_{ij}^{(1)} w_{j}^{(2)} + b^{(2)}$$

• Let the input in the zeroth layer be $x_{ij}, j = 1, 2, ..., m$.

$$a_{ij}^{(1)} = g\left(z_{ij}^{(1)}\right)$$

$$z_{ij}^{(1)} = \sum_{j'=1}^{m} (x_{ij'} w_{j'j}^{(1)} + b_j^{(1)})$$

Required Gradients

Definition

 The derivatives that are required for the gradient descents are the following.

$$\frac{\partial C}{\partial w_{j'j}^{(1)}}, j = 1, 2, ..., m^{(1)}, j' = 1, 2, ..., m$$

$$\frac{\partial C}{\partial b_{j'}^{(1)}}, j' = 1, 2, ..., m$$

$$\frac{\partial C}{\partial w_{j}^{(2)}}, j = 1, 2, ..., m^{(1)}$$

$$\frac{\partial C}{\partial b^{(2)}}$$

Gradients of Second Layer Definition

Apply chain rule once to get the gradients for the second layer.

$$\frac{\partial C}{\partial w_j^{(2)}} = \sum_{i=1}^n \frac{\partial C}{\partial a_i} \frac{\partial a_i}{\partial z_i} \frac{\partial z_i}{\partial w_j^{(2)}}, j = 1, 2,, m^{(1)}$$
$$\frac{\partial C}{\partial b^{(2)}} = \sum_{i=1}^n \frac{\partial C}{\partial a_i} \frac{\partial a_i}{\partial z_i} \frac{\partial z_i}{\partial b^{(2)}}$$

Gradients of First Layer

Definition

Chain rule twice says,

$$\frac{\partial C}{\partial w_{j'j}^{(1)}} = \sum_{i=1}^{n} \frac{\partial C}{\partial a_{i}} \frac{\partial a_{i}}{\partial z_{i}} \frac{\partial z_{i}}{\partial a_{ij}^{(1)}} \frac{\partial a_{ij}^{(1)}}{\partial z_{ij}^{(1)}} \frac{\partial z_{ij}^{(1)}}{\partial w_{j'j}^{(1)}}
j = 1, 2,, m^{(1)}, j' = 1, 2, ..., m
$$\frac{\partial C}{\partial b_{j}^{(1)}} = \sum_{i=1}^{n} \frac{\partial C}{\partial a_{i}} \frac{\partial a_{i}}{\partial z_{i}} \frac{\partial z_{i}}{\partial a_{ij}^{(1)}} \frac{\partial a_{ij}^{(1)}}{\partial z_{ij}^{(1)}} \frac{\partial z_{ij}^{(1)}}{\partial b_{j}^{(1)}}
j = 1, 2,, m^{(1)}$$$$

Derivative of Error

Definition

Compute the derivative of the error function.

$$C = \frac{1}{2} \sum_{i=1}^{n} (y_i - a_i)^2$$

$$\Rightarrow \frac{\partial C}{\partial a_i} = y_i - a_i$$

Derivative of Interal Outputs, Part 1

Definition

Compute the derivative of the output in the second layer.

$$a_{i} = g(z_{i})$$

$$\Rightarrow \frac{\partial a_{i}}{\partial z_{i}} = g(z_{i})(1 - g(z_{i})) = a_{i}(1 - a_{i})$$

$$z_{i} = \sum_{j=1}^{m^{(1)}} a_{ij}^{(1)} w_{j}^{(2)} + b^{(2)}$$

$$\Rightarrow \frac{\partial z_{i}}{\partial w_{j}^{(2)}} = a_{ij}^{(1)}, \frac{\partial z_{i}}{\partial b^{(2)}} = 1$$

Derivative of Interal Outputs, Part 2

Definition

Compute the derivative of the output in the first layer.

$$a_{ij}^{(1)} = g\left(z_{ij}^{(1)}\right)$$

$$\Rightarrow \frac{\partial a_{ij}^{(1)}}{\partial z_{ij}^{(1)}} = g\left(z_{ij}^{(1)}\right) \left(1 - g\left(z_{ij}^{(1)}\right)\right) = a_{ij}^{(1)} \left(1 - a_{ij}^{(1)}\right)$$

$$z_{ij}^{(1)} = \sum_{j'=1}^{m} x'_{ij} w_{j'j}^{(1)} + b_{j}^{(1)}$$

$$\Rightarrow \frac{\partial z_{ij}^{(1)}}{\partial w_{j'j}^{(1)}} = x_{ij'}, \frac{\partial z_{ij}^{(1)}}{\partial b_{j}^{(1)}} = 1$$

Derivative of Interal Outputs, Part 3 Definition

Compute the derivative between the outputs.

$$z_{i} = \sum_{j=1}^{m^{(1)}} a_{ij}^{(1)} w_{j}^{(2)} + b^{(2)}$$

$$\Rightarrow \frac{\partial z_{i}}{\partial a_{ij}^{(1)}} = w_{j}^{(2)}$$

Gradient Step, Combined

Definition

 Put everything back into the chain rule formula. (Please check for typos!)

$$\frac{\partial C}{\partial w_{j'j}^{(1)}} = \sum_{i=1}^{n} (y_i - a_i) a_i (1 - a_i) w_j^{(2)} a_{ij}^{(1)} \left(1 - a_{ij}^{(1)}\right) x_{ij'}$$

$$\frac{\partial C}{\partial b_{j'}^{(1)}} = \sum_{i=1}^{n} (y_i - a_i) a_i (1 - a_i) w_j^{(2)} a_{ij}^{(1)} \left(1 - a_{ij}^{(1)}\right)$$

$$\frac{\partial C}{\partial w_j^{(2)}} = \sum_{i=1}^{n} (y_i - a_i) a_i (1 - a_i) a_{ij}^{(1)}$$

$$\frac{\partial C}{\partial b^{(2)}} = \sum_{i=1}^{n} (y_i - a_i) a_i (1 - a_i)$$

$$\alpha_i - \gamma_j = \sum_{i=1}^{n} (y_i - a_i) a_i (1 - a_i)$$

Gradient Descent Step

Definition

 The gradient descent step is the same as the one for logistic regression.

$$\begin{split} w_{j}^{(2)} \leftarrow w_{j}^{(2)} - \alpha \frac{\partial C}{\partial w_{j}^{(2)}}, j = 1, 2,, m^{(1)} \\ b^{(2)} \leftarrow b^{(2)} - \alpha \frac{\partial C}{\partial b^{(2)}}, \\ w_{j'j}^{(1)} \leftarrow w_{j'j}^{(1)} - \alpha \frac{\partial C}{\partial w_{j'j}^{(1)}}, j' = 1, 2,, m, j = 1, 2,, m^{(1)} \\ b_{j}^{(1)} \leftarrow b_{j}^{(1)} - \alpha \frac{\partial C}{\partial b_{j}^{(1)}}, j = 1, 2,, m^{(1)} \end{split}$$

Back Propagation

Quiz (Graded)

- 2018 May Final Exam Q4
- Which one best describes backpropagation?
- A: Activation values are propagated from input nodes to output nodes.
- B: Activation values are propagated from output nodes to input nodes.
- C: Do not choose this.
- D: Weights are modified based on values propagated from input nodes to output nodes.
- E: Weights are modified based on values propagated from output nodes to input nodes.

Backpropogation, Part 1

Algorithm

- Inputs: instances: $\{x_i\}_{i=1}^n$ and $\{y_i\}_{i=1}^n$, number of hidden layers L with units $m^{(1)}, m^{(2)}, ..., m^{(L-1)}$, with $m^{(0)} = m, m^{(L)} = 1$, and activation function g is the sigmoid function.
- Outputs: weights and biases:

$$w_{j'j}^{(I)}, b_j^{(I)}, j' = 1, 2, ..., m^{(I-1)}, j = 1, 2, ..., m^{(I)}, I = 1, 2, ..., L$$

Initialize the weights.

$$w_{j'j}^{(I)}, b_j^{(I)} \sim \text{Unif } [0, 1]$$

Backpropogation, Part 2 Algorithm

Evaluate the activation functions.

$$a_{ij} = g \left(\sum_{j=1}^{m^{(L-1)}} a_{ij}^{(L-1)} w_{j}^{(L)} + b^{(L)} \right)$$

$$a_{ij}^{(I)} = g \left(\sum_{j'=1}^{m^{(I-1)}} a_{ij'}^{(I)} w_{j'j}^{(I)} + b_{j}^{(I)} \right), I = 1, 2, ..., L - 1$$

$$a_{ij}^{(0)} = x_{ij}$$

Backpropogation, Part 3

Algorithm

• Compute the δ to simplify the expression of the gradient.

$$\delta_{i}^{(L)} = (y_{i} - a_{i}) a_{i} (1 - a_{i})$$

$$\delta_{ij}^{(I)} = \sum_{j'=1}^{m^{(I+1)}} \delta_{j'}^{(I+1)} w_{jj'}^{(I+1)} a_{ij}^{(I)} \left(1 - a_{ij}^{(I)}\right), I = 1, 2, ..., L - 1$$

Compute the gradient using the chain rule.

$$\frac{\partial C}{\partial w_{j'j}^{(I)}} = \sum_{i=1}^{n} \delta_{ij}^{(I)} a_{ij'}^{(I-1)}, I = 1, 2, ..., L$$
$$\frac{\partial C}{\partial b_{j}^{(I)}} = \sum_{i=1}^{n} \delta_{ij}^{(I)}, I = 1, 2, ..., L$$

Backpropogation, Part 4

Algorithm

Update the weights and biases using gradient descent.

For
$$l = 1, 2, ..., L$$

$$w_{j'j}^{(I)} \leftarrow w_{j'j}^{(I)} - \alpha \frac{\partial C}{\partial w_{j'j}^{(I)}}, j' = 1, 2,, m^{(I-1)}, j = 1, 2,, m^{(I)}$$

$$b_j^{(I)} \leftarrow b_j^{(I)} - \alpha \frac{\partial C}{\partial b_j^{(I)}}, j = 1, 2,, m^{(I)}$$

Repeat the process until convergent.

$$|C - C|^{\mathsf{prev}}| < \varepsilon$$

Backpropogation, Multi-Layer, Diagram Discussion

Training Set Performance

Quiz (Participation)

- 2018 May Final Exam Q4
- Multi-layer neural network with sigmoid activation can achieve 100 percent correct classification for any set of training examples given sufficiently small learning rate.
- A: Do not choose this.
- B: True.
- C: Do not choose this.
- D: False.
- E: Do not choose this.