CS540 Introduction to Artificial Intelligence Lecture 3

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

June 23, 2021

Two-thirds of the Average Game

- Pick an integer between 0 and 100 (including 0 and 100) that is the closest to two-thirds of the average of the numbers other people picked.
- The results from the previous lecture is posted on the Q1 page of the course website.

Prerecorded Lectures Admin

- If you find the Zoom lectures difficult to follow, you can watch the prerecorded lectures first.
- If you prefer learning the materials more systematically (not through examples), you can watch the prerecorded lectures after the Zoom lectures.

Additional Discussion Sessions Admin

- I could add unofficial discussion sessions (on Zoom, recorded) on Fridays from 12: 30 to 1: 45 go through examples, quizzes and homework questions again more slowly (no new materials, no new questions).
- A: I am planning to attend these sessions.
- B: I am not planning to attend but I am okay with having these sessions.
- C: I am not planning to attend and I am against having these sessions.
- D: Do not choose.
- E: Do not choose.

Remind Me to Start Recording Admin

 The messages you send in chat will be recorded: you can change your Zoom name now before I start recording.

Optimization Diagram

Motivation

Gradient Descent

Quiz

 What is the gradient descent step for w if the objective (cost) function is the squared error?

Gradient Descent, Answer

Gradient Descent, Another One

 What is the gradient descent step for w if the activation function is the identity function?

$$C = \frac{1}{2} \sum_{i=1}^{n} (a_i - y_i)^2, a_i = w^T x_i + b, \quad 0 := g(z) = z$$

$$\bullet A: w = w - \alpha \sum_{i=1}^{n} (a_i - y_i)$$

$$\bullet B: w = w - \alpha \sum_{i=1}^{n} (a_i - y_i) x_i$$

$$\bullet C: w = w - \alpha \sum_{i=1}^{n} (a_i - y_i) x_i$$

$$\downarrow C: w = w - \alpha \sum_{i=1}^{n} (a_i - y_i) x_i$$

• D:
$$w = w - \alpha \sum (a_i - y_i) (1 - a_i) x_i$$

• E: $w = w - \alpha \sum (a_i - y_i) a_i (1 - a_i) x_i$

Single Layer Perceptron

Motivation

LTh Loginic

- Perceptrons can only learn linear decision boundaries.
- Many problems have non-linear boundaries.
- One solution is to connect perceptrons to form a network.

Multi-Layer Perceptron Motivation

• The output of a perceptron can be the input of another.

$$a = g\left(w^{T}x + b\right) \qquad \text{Input layer}$$

$$a' = g\left(w'^{T}a' + b'\right) \qquad \text{Indden layer}$$

$$a'' = g\left(w''^{T}a' + b''\right) \qquad \text{output layer}$$

$$\hat{y} = \mathbb{1}_{\{a''>0\}}$$

Neural Network Biology Motivation

- Human brain: 100, 000, 000, 000 neurons.
- Each neuron receives input from 1,000 others.
- An impulse can either increase or decrease the possibility of nerve pulse firing.
- If sufficiently strong, a nerve pulse is generated.
- The pulse forms the input to other neurons.

Theory of Neural Network

Motivation

- In theory:
- 1 Hidden-layer with enough hidden units can represent any continuous function of the inputs with arbitrary accuracy.
- 2 Hidden-layer can represent discontinuous functions.
 - In practice:
- AlexNet: 8 layers.
 - GoogLeNet: 27 layers (or 22 + pooling).
 - ResNet: 152 layers.

Gradient Descent

Motivation

۷ (مر)

• The derivatives are more difficult to compute.

- The problem is no longer convex. A local minimum is longer guaranteed to be a global minimum.
- Need to use chain rule between layers called backpropagation.

Backpropagation

Description

- Initialize random weights.
- (Feedforward Step) Evaluate the activation functions.
- (Backpropagation Step) Compute the gradient of the cost function with respect to each weight and bias using the chain rule.
- Update the weights and biases using gradient descent.
- Repeat until convergent.

Neural Network Demo

Motivation

Two-Layer Neural Network Weights Diagram 1

Motivation
$$\int_{a}^{b} g(x_{1}w_{1}^{(1)} + x_{2}w_{2}^{(1)} + b_{1}^{(1)})$$

$$\int_{a}^{b} g(h_{1}w_{1}^{(1)} + h_{2}w_{2}^{(1)} + b_{1}^{(1)})$$

$$\int_{a}^{b} g(x_{1}w_{1}^{(1)} + x_{2}w_{2}^{(1)} + b_{1}^{(1)})$$

$$\int_{a}^{b} g(x_{1}w_{1}^{(1)} + x_{2}w_{2}^{(1)} + b_{1}^{(1)})$$

$$\int_{a}^{b} g(x_{1}w_{1}^{(1)} + x_{2}w_{2}^{(1)} + b_{1}^{(1)})$$

Two-Layer Neural Network Weights Diagram 2

Two-Layer Neural Network Weights Diagram 3 Motivation

Gradient Step, Combined

Definition

 Put everything back into the chain rule formula. (Please check for typos!)

$$\frac{\partial C}{\partial w_{j'j}^{(1)}} = \sum_{i=1}^{n} (a_i - y_i) a_i (1 - a_i) w_j^{(2)} a_{ij}^{(1)} \left(1 - a_{ij}^{(1)} \right) x_{ij'}$$

$$\frac{\partial C}{\partial b_j^{(1)}} = \sum_{i=1}^{n} (a_i - y_i) a_i (1 - a_i) w_j^{(2)} a_{ij}^{(1)} \left(1 - a_{ij}^{(1)} \right)$$

$$\frac{\partial C}{\partial w_j^{(2)}} = \sum_{i=1}^{n} (a_i - y_i) a_i (1 - a_i) a_{ij}^{(1)}$$

$$\frac{\partial C}{\partial b^{(2)}} = \sum_{i=1}^{n} (a_i - y_i) a_i (1 - a_i)$$

Gradient Descent Step

Definition

 The gradient descent step is the same as the one for logistic regression.

$$\begin{split} w_{j}^{(2)} &\leftarrow w_{j}^{(2)} - \alpha \frac{\partial C}{\partial w_{j}^{(2)}}, j = 1, 2,, m^{(1)} \\ b^{(2)} &\leftarrow b^{(2)} - \alpha \frac{\partial C}{\partial b^{(2)}}, \\ w_{j'j}^{(1)} &\leftarrow w_{j'j}^{(1)} - \alpha \frac{\partial C}{\partial w_{j'j}^{(1)}}, j' = 1, 2,, m, j = 1, 2,, m^{(1)} \\ b_{j}^{(1)} &\leftarrow b_{j}^{(1)} - \alpha \frac{\partial C}{\partial b_{j}^{(1)}}, j = 1, 2,, m^{(1)} \end{split}$$

Remind Me to Stop Recording Admin

 If you accidentally selected an obviously incorrect answer earlier, you can enter the question name and the correct answer here.

• What function does the single layer LTU perceptron with $w_1^{(1)} = 1$, $w_2^{(1)} = 1$, $b^{(1)} = -1.5$ compute?

O(2	x_1	<i>x</i> ₂	УА	УВ	УС	УD	УЕ
0	-1.5	0	0	0	0	1	1	0
0	- 0.5	0	1	0	1	1	0	1
0	-0.5	1	0	0	1	1	0	1
1	7,0	1	1	1/	1	0	1	0

• What function does the single layer LTU perceptron with $w_1^{(1)} = 1$, $w_2^{(1)} = 1$, $b^{(1)} = -0.5$ compute?

a	Z	<i>x</i> ₁	<i>x</i> ₂	УА	УВ	УС	УD	УЕ
b	-0.5	0	0	0	0	1	1	0
1	0.5	0	1	0	1	1	0	1
1	0.5	1	0	0	1	1	0	1
1	1.5	1	1	1	1	0	1	0

• What function does the multi-layer LTU perceptron network with $w_{11}^{(1)} = -1$, $w_{21}^{(1)} = -1$, $b_1^{(1)} = 1.5$, $w_{12}^{(1)} = 1$, $w_{22}^{(1)} = 1$, $b_2^{(1)} = -0.5$, $w_1^{(2)} = 1$, $w_2^{(2)} = 1$, $b_2^{(2)} = -1.5$ compute?

		_				_				
a	2	az	G,	<i>x</i> ₁	<i>x</i> ₂	УА	УВ	УС	УD	УΕ
0	-0,5	0	1	0	0	0	0	1	1	0
1	6.5	1	i	0	1	0	1	1	0	1
1	2.0	1	1	1	0	0	1	1	0	1
0	-0.5	1	S	1	1	1	1	0	1	0
			14							

Learning Logical Operators 3, Answer

• What function does the multi-layer LTU perceptron network with $w_{11}^{(1)} = -1$, $w_{21}^{(1)} = -1$, $b_1^{(1)} = 1.5$, $w_{12}^{(1)} = 1$, $w_{22}^{(1)} = 1$, $b_2^{(1)} = -0.5$, $w_1^{(2)} = -1$, $w_2^{(2)} = -1$, $b_2^{(2)} = 1.5$ compute?

x_1	<i>x</i> ₂	УА	УВ	УС	УD	УЕ
0	0	0	0	1	1	0
0	1	0	1	1	0	1
1	0	0	1	1	0	1
1	1	1	1	0	1	0

Solve on Thursday lecture.

Learning Logical Operators 4, Answer