CS540 Introduction to Artificial Intelligence Lecture 4

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

June 5, 2020

Socrative Test

Socrative Student Login: Room CS540C. Use the wisc.edu ID without the wisc.edu.

Use Socrative Room CS540 (without the C) for anonymous

feedback.

A: I haven't started P1.

B: I have started P1.

C: I have finished part 1.

D: I have finished P1.

E: What is P1?

Perceptron Algorithm vs Logistic Regression

For LTU Perceptrons, w is updated for each instance x_i sequentially.

$$w = w - \alpha \left(a_i - y_i \right) x_i$$

 For Logistic Perceptrons, w is updated using the gradient that involves all instances in the training data.

Stochastic Gradient Descent Diagram 1

Stochastic Gradient Descent Diagram 2

Motivation

Multi-Class Classification

Motivation

- When there are K categories to classify, the labels can take K different values, y_i ∈ {1, 2, ..., K}.
- Logistic regression and neural network cannot be directly applied to these problems.

Method 1, One VS All

- Train a binary classification model with labels $y'_i = \mathbb{1}_{\{y_i = j\}}$ for each j = 1, 2, ..., K.
- Given a new test instance x_i, evaluate the activation function a_i^(j) from model j.

$$\hat{y}_i = \arg\max_j a_i^{(j)}$$

One problem is that the scale of a_i^(j) may be different for different j.

Method 2, One VS One

Discussion

- Train a binary classification model with for each of the
- Given a new test instance x_i , apply all $\frac{K(K-1)}{2}$ models and output the class that receives the largest number of votes.

$$\hat{y}_i = \arg\max_{j} \sum_{j' \neq j} \hat{y}_i^{(j \text{ vs } j')}$$

 One problem is that it is not clear what to do if multiple classes receive the same number of votes.

One Hot Encoding

- If y is not binary, use one-hot encoding for y.
- For example, if y has three categories, then

$$y_i \in \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

Method 3, Softmax Function

Discussion

• For both logistic regression and neural network, the last layer will have K units, a_{ij} , for j=1,2,...,K and the softmax function is used instead of the sigmoid function.

$$a_{ij} = g\left(w_j^T x_i + b_j\right) = \frac{\exp\left(-w_j^T x_i - b_j\right)}{\sum\limits_{j'=1}^K \exp\left(-w_{j'}^T x_i - b_{j'}\right)}, j = 1, 2, ..., K$$

Softmax Derivatives

Discussion

- Cross entropy loss is also commonly used with softmax activation function.
- The gradient of cross entropy loss with respect to a_{ij}, component j of the output layer activation for instance i has the same form as the one for logistic regression.

$$\frac{\partial C}{\partial a_{ij}} = a_{ij} - y_{ij} \Rightarrow \nabla_{a_i} C = a_i - y_i$$

 The gradient with respect to the weights can be found using the chain rule.

Softmax Diagram

Weight Count

- foi each non-input unit

• How many weights and biases are there in a (fully connected) three layer neural network with 2 input units, 3 hidden units in the first hidden layer, 2 hidden units in the second hidden layer, and 3 output units?

Weight Count 2

QZ

 How many weights (not including bias) are there in a (fully connected) two layer neural network with 10 input units, 5 hidden units, and 10 output units.

A: 50

B: 55

C:)100

D: 110

E: 500

Weight Count 3

 How many biases are there in a (fully connected) two layer neural network with 10 input units, 5 hidden units, and 10 output units.

• A: 5

B: 10

• C: 15

D: 20

• E: 25

0 5

Questions about P1

Admir

主(少)~何;)

trainly strain unlidate

a=s(wrx+b)

- Cost function?
- Learning rate? Loth epoch
- Stopping criterion?

(< 0,0) (not recognero

Stochastic vs regular gradient descent?

- Regularization? //
- > snall
- Use test set to train? NO.

converge

Other questions?

 $= (q_1 - y_1) \alpha_1^{(2)} (1 - \alpha_1^{(2)}) w^{(2)} \alpha_1^{(1)} (1 - \alpha_1^{(2)}) x$

D N = M - 59 C

→□ > →□ > → □ > → □ > → □ > → □ > → □ > → □ > → □ > → □

Generalization Error Diagram

Motivation

Method 1, Validation Set

- Set aside a subset of the training set as the validation set.
- During training, the cost (or accuracy) on the training set will always be decreasing until it hits 0.
- Train the network until the cost (or accuracy) on the validation set begins to increase.

Method 2, Drop Out

- At each hidden layer, a random set of units from that layer is set to 0.
- For example, each unit is retained with probability p = 0.5.
 During the test, the activations are reduced by p = 0.5 (or 50 percent).
- The intuition is that if a hidden unit works well with different combinations of other units, it does not rely on other units and it is likely to be individually useful.

Method 3, L1 and L2 Regularization

- The idea is to include an additional cost for non-zero weights.
- The models are simpler if many weights are zero.
- For example, if logistic regression has only a few non-zero weights, it means only a few features are relevant, so only these features are used for prediction.

Method 3, L1 Regularization

Discussion

 For L1 regularization, add the 1-norm of the weights to the cost.

$$C = \sum_{i=1}^{n} (a_i - y_i)^2 + \lambda \left\| \begin{bmatrix} w \\ b \end{bmatrix} \right\|_1$$

$$= \sum_{i=1}^{n} (a_i - y_i)^2 + \lambda \left(\sum_{i=1}^{m} |w_i| + |b| \right)$$

$$= \sum_{i=1}^{n} (a_i - y_i)^2 + \lambda \left(\sum_{i=1}^{m} |w_i| + |b| \right)$$

$$= \sum_{i=1}^{n} (a_i - y_i)^2 + \lambda \left(\sum_{i=1}^{m} |w_i| + |b| \right)$$

$$= \sum_{i=1}^{n} (a_i - y_i)^2 + \lambda \left(\sum_{i=1}^{m} |w_i| + |b| \right)$$

 Linear regression with L1 regularization is called LASSO (least absolute shrinkage and selection operator).

for twine selection

Method 3, L2 Regularization

Discussion

 For L2 regularization, add the 2-norm of the weights to the cost.

$$C = \sum_{i=1}^{n} (a_i - y_i)^2 + \lambda \left\| \begin{bmatrix} w \\ b \end{bmatrix} \right\|_2^2$$
$$= \sum_{i=1}^{n} (a_i - y_i)^2 + \lambda \left(\sum_{i=1}^{m} w_i^2 + b^2 \right)$$

Method 4, Data Augmentation

Discussion

 More training data can be created from the existing ones, for example, by translating or rotating the handwritten digits.