CS540 Introduction to Artificial Intelligence Lecture 4

Young Wu
Based on lecture slides by Jerry Zhu and Yingyu Liang

May 29, 2019

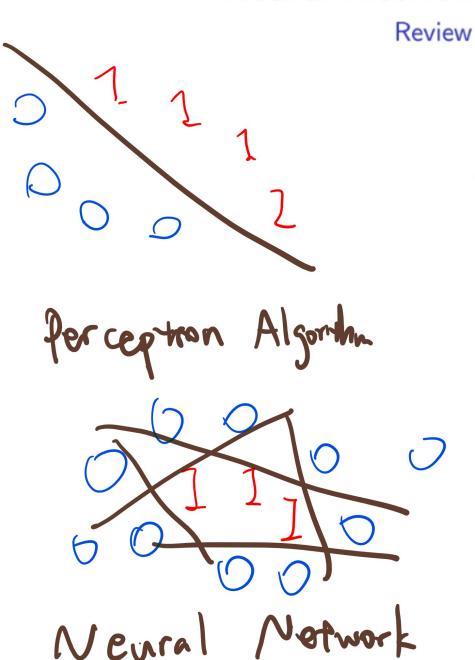
Test Quiz (Graded)

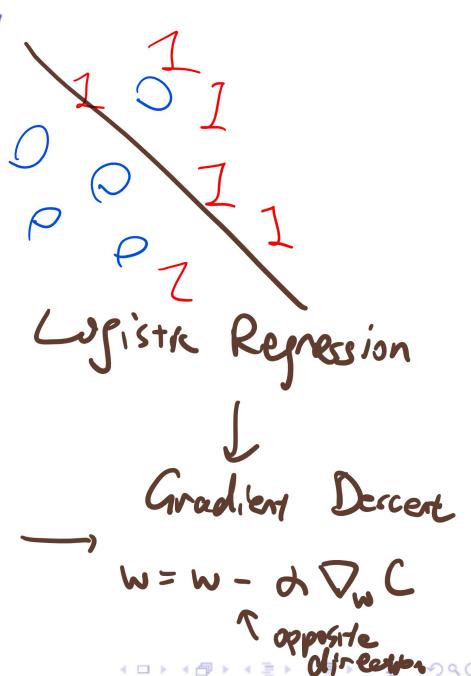
- A:
- B:
- C:
- D: Choose this.
- E:

Homework Quiz (Participation)

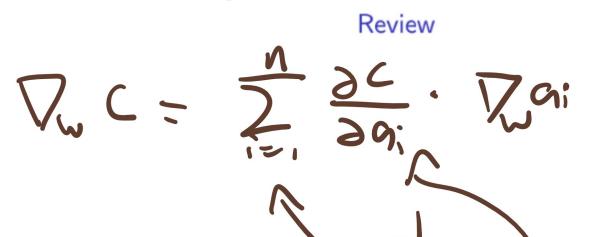
- Have you finished homework 1
- A: Waiting for solution.
- B: Will start soon.
- C: Started.
- D: Does not work due to bugs.
- E: Finished: 90+ percent accuracy.

Neural Network Diagram





Multi-Layer Neural Network Diagram



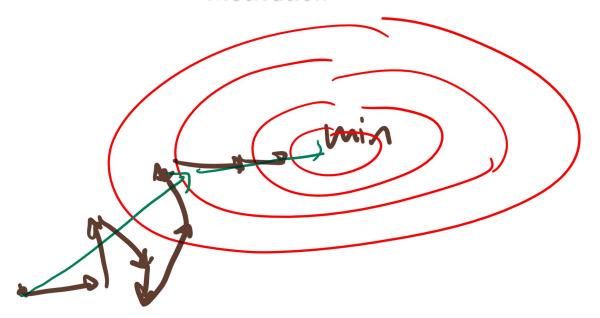
Stochastic Gradient Descent

Motivation

- Each gradient descent step requires the computation of gradients for all training instances i = 1, 2, ..., n. It is very costly.
- Stochastic gradient descent picks one instance x_i randomly, compute the gradient, and update the weights and biases.
- When a batch of instances is selected randomly each time, it is called batch gradient descent.

Stochastic Gradient Descent Diagram

Motivation



Stochastic Gradient Descent, Part 1 Algorithm

- Inputs, Outputs: same as backpropagation.
- Initialize the weights.
- Randomly permute (shuffle) the training set. Evaluate the activation functions at one instance at a time.
- Compute the gradient using the chain rule.

weight
$$\frac{\partial C}{\partial w_{j'j}^{(l)}} = \delta_{ij}^{(l)} a_{ij'}^{(l-1)}$$

$$\frac{\partial C}{\partial b_{j}^{(l)}} = \delta_{ij}^{(l)}$$

Stochastic Gradient Descent, Part 2

Algorithm

Update the weights and biases using gradient descent.

For
$$l = 1, 2, ..., L$$

$$w_{j'j}^{(I)} \leftarrow w_{j'j}^{(I)} - \alpha \frac{\partial C}{\partial w_{j'j}^{(I)}}, j' = 1, 2,, m^{(I-1)}, j = 1, 2,, m^{(I)}$$

$$b_j^{(I)} \leftarrow b_j^{(I)} - \alpha \frac{\partial C}{\partial b_j^{(I)}}, j = 1, 2,, m^{(I)}$$

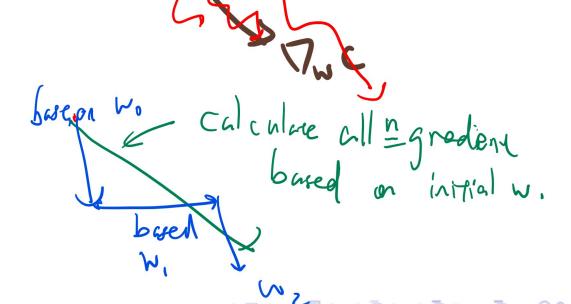
Repeat the process until convergent.

$$|C - C|^{\mathsf{prev}}| < \varepsilon$$

Stochastic vs Full Gradient Descent

Quiz (Participation)

- Given the same initial weights and biases, stochastic gradient descent with instances picked randomly without replacement and full gradient descent lead to the same updated weights.
- A: Do not choose this.
- B: True.
- C: Do not choose this.
- D: False.
- E: Do not choose this.



Generalization Error

Motivation

- With a large number of hidden units and small enough learning rate α, a multi-layer neural network can fit every finite training set perfectly.
- It does not imply the performance on the test set will be good.
- This problem is called overfitting.

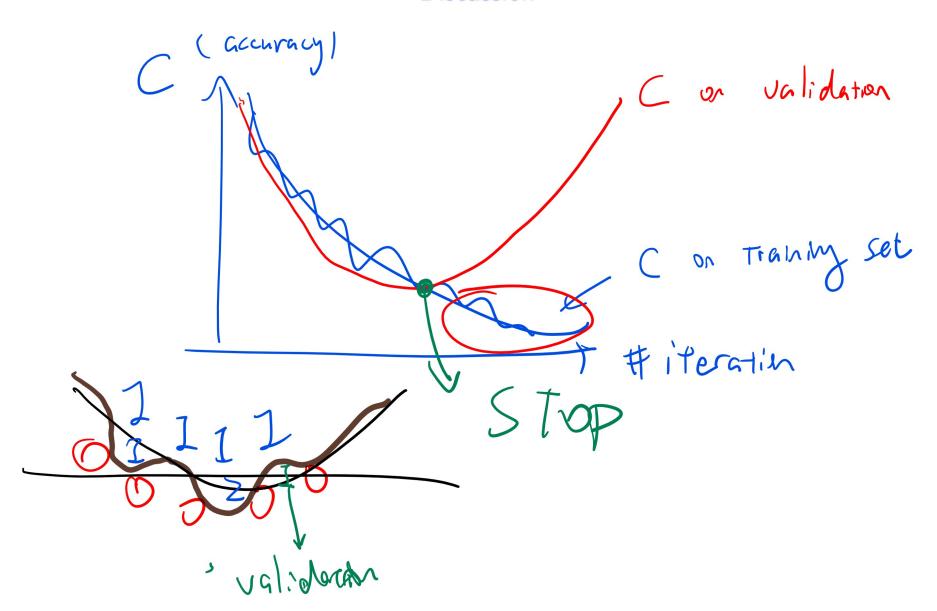
Generalization Error Diagram

Motivation

Method 1, Validation Set

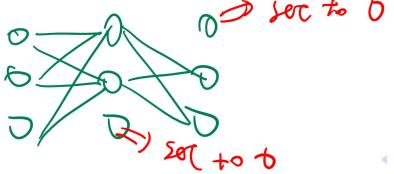
- Set aside a subset of the training set as the validation set.
- During training, the cost (or accuracy) on the training set will always be decreasing until it hits 0.
- Train the network until the cost (or accuracy) on the validation set begins to increase.

Validation Set Diagram



Method 2, Drop Out

- At each hidden layer, a random set of units from that layer is set to 0.
- For example, each unit is retained with probability p = 0.5. During the test, the activations are reduced by p = 0.5 (or 50 percent).
- The intuition is that if a hidden unit works well with different combinations of other units, it does not rely on other units and it is likely to be individually useful.



Drop Out Diagram

Method 3, L1 and L2 Regularization

- The idea is to include an additional cost for non-zero weights.
- The models are simpler if many weights are zero.
- For example, if logistic regression has only a few non-zero weights, it means only a few features are relevant, so only these features are used for prediction.

Method 3, L1 Regularization

Discussion

 For L1 regularization, add the 1-norm of the weights to the cost.

Cost.

$$C = \sum_{i=1}^{n} (a_i - y_i)^2 + \lambda \left\| \begin{bmatrix} w \\ b \end{bmatrix} \right\|_1$$

$$= \sum_{i=1}^{n} (a_i - y_i)^2 + \lambda \left(\sum_{i=1}^{m} |w_i| + |b| \right)$$
weights.

• Linear regression with L1 regularization is called LASSO (least

 Linear regression with L1 regularization is called LASSO (least absolute shrinkage and selection operator).

Method 3, L2 Regularization

Discussion

 For L2 regularization, add the 2-norm of the weights to the cost.

$$C = \sum_{i=1}^{n} (a_i - y_i)^2 + \frac{\lambda}{2} \left\| \begin{bmatrix} w \\ b \end{bmatrix} \right\|_{2}^{2}$$

$$|\text{earnly rate}| = \sum_{i=1}^{n} (a_i - y_i)^2 + \frac{\lambda}{2} \left(\sum_{i=1}^{m} w_i^2 + b^2 \right)$$

$$|\text{earnly rate}| = \sum_{i=1}^{n} (a_i - y_i)^2 + \frac{\lambda}{2} \left(\sum_{i=1}^{m} w_i^2 + b^2 \right)$$

$$|\text{earnly rate}| = \sum_{i=1}^{n} (a_i - y_i)^2 + \frac{\lambda}{2} \left(\sum_{i=1}^{m} w_i^2 + b^2 \right)$$

$$|\text{earnly rate}| = \sum_{i=1}^{n} (a_i - y_i)^2 + \frac{\lambda}{2} \left(\sum_{i=1}^{m} w_i^2 + b^2 \right)$$

$$|\text{earnly rate}| = \sum_{i=1}^{n} (a_i - y_i)^2 + \frac{\lambda}{2} \left(\sum_{i=1}^{m} w_i^2 + b^2 \right)$$

$$|\text{earnly rate}| = \sum_{i=1}^{n} (a_i - y_i)^2 + \frac{\lambda}{2} \left(\sum_{i=1}^{m} w_i^2 + b^2 \right)$$

$$|\text{earnly rate}| = \sum_{i=1}^{n} (a_i - y_i)^2 + \frac{\lambda}{2} \left(\sum_{i=1}^{m} w_i^2 + b^2 \right)$$

$$|\text{earnly rate}| = \sum_{i=1}^{n} (a_i - y_i)^2 + \frac{\lambda}{2} \left(\sum_{i=1}^{m} w_i^2 + b^2 \right)$$

$$|\text{earnly rate}| = \sum_{i=1}^{n} (a_i - y_i)^2 + \frac{\lambda}{2} \left(\sum_{i=1}^{m} w_i^2 + b^2 \right)$$

$$|\text{earnly rate}| = \sum_{i=1}^{n} (a_i - y_i)^2 + \frac{\lambda}{2} \left(\sum_{i=1}^{m} w_i^2 + b^2 \right)$$

$$|\text{earnly rate}| = \sum_{i=1}^{n} (a_i - y_i)^2 + \frac{\lambda}{2} \left(\sum_{i=1}^{m} w_i^2 + b^2 \right)$$

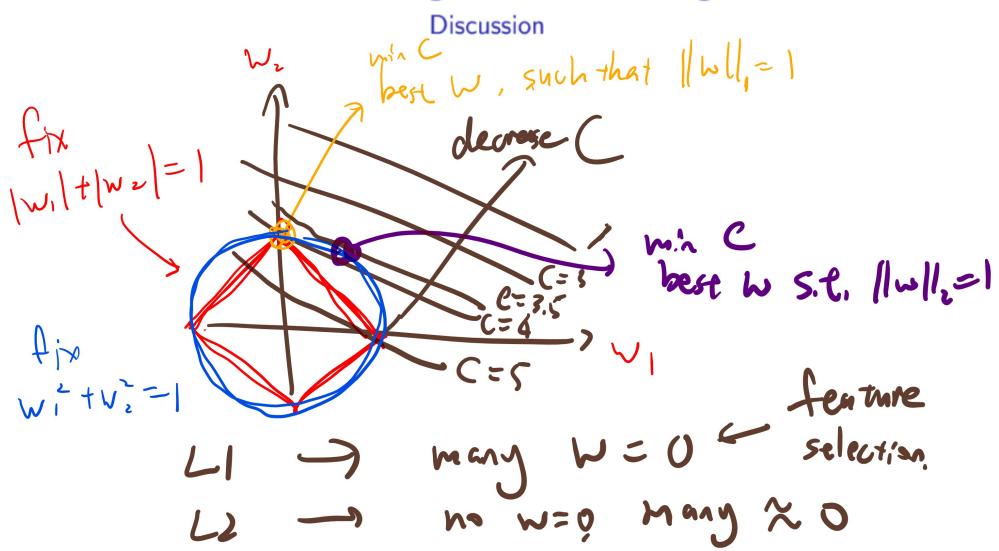
$$|\text{earnly rate}| = \sum_{i=1}^{n} (a_i - y_i)^2 + \frac{\lambda}{2} \left(\sum_{i=1}^{m} w_i^2 + b^2 \right)$$

$$|\text{earnly rate}| = \sum_{i=1}^{n} (a_i - y_i)^2 + \frac{\lambda}{2} \left(\sum_{i=1}^{m} w_i^2 + b^2 \right)$$

L1 and L2 Regularization Comparison

- L1 regularization leads to more weights that are exactly 0. It is useful for feature selection.
- L2 regularization leads to more weights that are close to 0. It is easier to do gradient descent because 1-norm is not differentiable.

L1 and L2 Regularization Diagram



Method 4, Data Augmentation

Discussion

 More training data can be created from the existing ones, for example, by translating or rotating the handwritten digits.

Hyperparameters

- It is not clear how to choose the learning rate α , the stopping criterion ε , and the regularization parameters.
- For neural networks, it is also not clear how to choose the number of hidden layers and the number of hidden units in each layer.
- The parameters that are not parameters of the functions in the hypothesis space are called hyperparameters.

K Fold Cross Validation

Discussion

train on training set to find v. b

test an validation to compare performance

Partition the training set into K groups.

C, accuracy.

- Pick one group as the validation set.
- Train the model on the remaining training set.
- Repeat the process for each of the K groups.
- Compare accuracy (or cost) for models with different hyperparameters and select the best one.

5 Fold Cross Validation Example

Discussion

• Partition the training set S into 5 subsets S_1, S_2, S_3, S_4, S_5

$$S_i \cap S_j = \emptyset$$
 and $\bigcup_{i=1}^5 S_i = S$

Iteration	Training	Validation		
1	$S_2 \cup S_3 \cup S_4 \cup S_5$	S_1		
2	$S_1 \cup S_3 \cup S_4 \cup S_5$	S_2		
3	$S_1 \cup S_2 \cup S_4 \cup S_5$	<i>S</i> ₃		
4	$S_1 \cup S_2 \cup S_3 \cup S_5$	S_4		
5	$S_1 \cup S_2 \cup S_3 \cup S_4$	S_5		

get C or all taining instances.

Leave One Out Cross Validation

Discussion

• If K = n, each time exactly one training instance is left out as the validation set. This special case is called Leave One Out Cross Validation (LOOCV).

Cross Validation, Part II Quiz (Graded)

March 2018 Midterm Q9

will report

• Consider the majority classifier that predict $\hat{y} = \underline{\text{mode}}$ of the training data labels. What is the 2-fold cross validation accuracy (percentage of correct classification) on the following training set.

 x
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 y
 1
 1
 0
 1
 1
 0
 0
 1
 0
 0

A: 0 percent, B: 10 percent, C. 20 percent

D: 50 percent, E: 100 percent

Cross Validation, Part I

Quiz (Graded)

March 2018 Midterm Q9

• Consider the majority classifier that predict $\hat{y} = \text{mode of the}$ training data labels. What is the LOOCV accuracy (percentage of correct classification) on the following training

set.

				1		7			
x 1	2	3	4	5	6	7	8	9	10
y 1	X	X	1	1/	0	0	1	0	0

A: 0 percent, B: 10 percent, C: 20 percent

D: 50 percent, E: 100 percent

Multi-Class Classification

- When there are K categories to classify, the labels can take K different values, y_i ∈ {1, 2, ..., K}.
- Logistic regression and neural network cannot be directly applied to these problems.

- Train a binary classification model with labels $y'_i = \mathbb{1}_{\{y_i = j\}}$ for each j = 1, 2, ..., K.
- Given a new test instance x_i, evaluate the activation function a_i^(j) from model j.

$$\hat{y}_i = \arg\max_j a_i^{(j)}$$

• One problem is that the scale of $a_i^{(j)}$ may be different for different j.

Method 2, One VS One

Discussion

- Train a binary classification model with for each of the $\frac{K(K-1)}{2}$ pairs of labels.
- Given a new test instance x_i , apply all $\frac{K(K-1)}{2}$ models and output the class that receives the largest number of votes.

$$\hat{y}_i = \arg\max_{j} \sum_{j' \neq j} \hat{y}_i^{(j \text{ vs } j')}$$

 One problem is that it is not clear what to do if multiple classes receive the same number of votes.

One Hot Encoding

- If y is not binary, use one-hot encoding for y.
- For example, if y has three categories, then

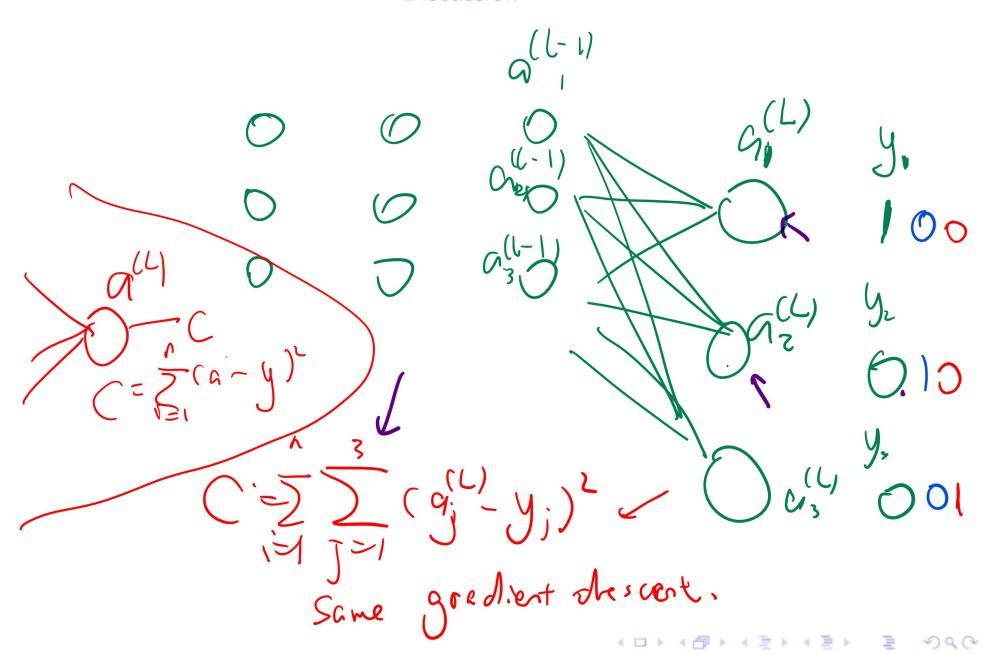
$$y_{i} \in \left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

Method 3, Softmax Function Discussion

• For both logistic regression and neural network, the last layer will have K units, a_{ij} , for j=1,2,...,K and the softmax function is used instead of the sigmoid function.

$$a_{ij} = g\left(w_j^T x_i + b_j\right) = \frac{\exp\left(w_j^T x_i + b_j\right)}{\sum_{j'=1}^K \exp\left(w_{j'}^T x_i + b_{j'}\right)}, j = 1, 2, ..., K$$

Softmax Function Diagram



- A multi-layer neural network with the same input and output $y_i = x_i$ is called an autoencoder.
- The hidden layers have fewer units than the dimension of the input m.
- The hidden units form an encoding of the input with reduced dimensionality.

Autoencode Diagram

Generative Adversarial Network

- Two competitive neural networks.
- Generative network input random noise and output fake images.
- ② Discriminative network input real and fake images and output label real or fake.

Generative Adversarial Network Diagram