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Margin and Support Vectors

Motivation

@ The perceptron algorithm finds any line (w, b) that separates
the two classes.

e The margin is the maximum width (thickness) of the line
before hitting any data point.

@ The instances that the thick line hits are called support
vectors.

@ The model that finds the line that separates the two classes
with the widest margin is call support vector machine (SVM).
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Support Vector Machine

Description

@ The problem is equivalent to minimizing the squared norm of
the weights | w/? =gw’7;_vy/_subject to the constraint that every
instance is classified correctly (with the margin).

e Use subgradient descent to find the weights and the bias.
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Finding the Margin

Definition

o Define two planes: plus plane w’x + b = 1 and minus plane
wix+b=—1.
2

VwTw

e If all of the instances with y; = 1 are above the plus plane and

all of the instances with y; = 0 are below the minus plane,
2

VwTw

@ The distance between the two planes is

then the margin is
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Constrained Optimization Derivation
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Constrained Optimization

Definition

@ The goal is to maximize the margin subject to the constraint
that the plus plane and the minus plane separates the
instances with y; = 0 and y; = 1.

r-/'
2 Tx;+b)<—1[ify;=0 |
max uch that (WTX' ) e I % -« 1=1,2,....n
w YWTW (w'x; +b) =1 ify; =1
(. c~— — -

@ The two constrains can be combined.

2 T :
: = =
mﬁxmsuch that w x,+b) >1,i=1.2,....n
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Hard Margin SVM

Definition
M ¥ "‘i ﬁ ~
[mve such that (2y; — 1) (wa,- + b) >1.i=1.2,....n
. Sove W

=1.2.....n



Support Vector Machines Subgradient Descent Kernel Tric
(slelelelelele]l [ole) Q00000 0000000

Soft Margin Diagram

Definition
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Soft Margin

Definition

e To allow for mistakes classifying a few instances, slack

variables are introduced.

. o 1
@ The cost of Wthe margin is given by some constant —.

— A
e Using slack variablehe problem can be written as the

followying. &
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Soft Margin SVM

Definition
G vacl(
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such that%—l) (wa,- - b) 1-¢&), f, > ;' =1,2.....n
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@ Thisis equuvalent to the following g minimization problem,

called soft mar M
e ﬂ

A+ 1
min -w'w + — max{O 1—(2y,—1)(
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Subgradient Descent

Definition

min—w' w + —
2

o The gradient for the above expression is not defined at points
with(1 — (2y; — 1) (whx; + b)i@
e Subgradient can be used instead of gradierLtj\.f \
e gL
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Subgradient

@ The subderivative at a point of a convex function in one
dimension is the set of slopes of the lines that are tangent to
the function at that point.

@ The subgradient is the version for higher dimensions.

e The subgradient ¢f (x) is formally defined as the following set.

S (?f(x)z{v:f(x') >f(x)+ v (¥ —x) ‘v’x'}
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Subgradient Descent Step A

Definition \/
0 yw

@ One possible set of subgradients with respect to w and b are

the following. - Q}\xm @J‘/

_ __/—m
P

0pC 3 — Z (2y; — 1))1{(2y;—1)(_wrx;+b)21}
=1

e The gradient descent step is the same as usual, using one of
the subgradients in place of the gradient.
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Class Notation and Bias Term

Definition

@ Usually, for SVM, the bias term is not included and updated.
Also, the classes are -1 and +1 instead of 0 and 1. Let the

labels be z; € {—1, +1} instead of y; € {0,1}. The gradient
steps are usually written the following way.

(lZ ]]‘{Z, TX,?].}

2 @ = 1,2, _
\

Tl =
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Regularization Parameter

Definition Wl = Wiy
[ &
Yo
—
" \
W= W — Z Z,']I{z'.wa,-;-],} 4@
i—1 ~1—

zi=2yi—1,1=12,...n

@ A is usually called the regularization parameter because it
reduces the magnitudée of w the same way as the parameter A
in L2 regularization.

® The stochastie subgradient descent algorithm for SVM is
called PEGASOS: Primal Estimated sub-GrAdient SOlver for
—— — — — - =

Svm.

-
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PEGASOS Algorithm
Algorithm
o Inputs: instances: {x;}'_; and {z; = 2y; — 1},
e

e OQutputs: weights: {Wj}jn;]_

e Initialize the weights.
w; ~ Unif [0, 1]
e Randomly permute (shuffle) the training set and performance
subgradient descent for each instance i.

w=(1-A)w-—azl,,7,.1}X

N

@ Repeat for a fixed number of iterations. <
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Discussion

Kernel Trick
8000000

e If the classes are not linearly separable, more features can be

created.

@ For example, a 1 dimensional x can be mapped to

@ () = [x,%°).

@ Another example is to map a 2 dimensional (x1,x2) to

o (X = [ X)) = (xlz,ﬁxl)@,x%).
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Kernel Trick 1D Diagram

Discussion
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Kernelized SVM

Discussion

{ee

e With a feature map ¢, the SMM can be trained on new data
points {(¢ (x1) ,y1), (¢ (x2) , y2) , oo, (9 (Xn) , yn) }
@ The weights w correspond to the new features ©

—
@ T[herefore, test instances are transformed to have the same

new features.
> s
( Vi = ]{wrw(XQ
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Kernel Matrix

Discussion

/\UQY 8, {ostury
° Theéeatur@s usually represented by a(n x n matrix K
called the Gram matrix (or kernel matrix).

Ku' _(/XI ¥ XI CQ- 0( Mffﬁl(x@

S webery, Ko [ GO Px) 9o few)
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Examples of Kernel Matrix

Discussion

o For example, if ¢ (x) = (x#,v/2x1x2,x3), then the kernel
N——"

matrix can be simplified. — J/\

2
K,','r = (XiTX,'/)

@ Another example is the quadratic kernel K;; = (x,-Tx,-: + 1

It can be factored to have the following feature
’_._/-'\
representations.

¥ (X) - (X]?, X22, \/§X1X2, \/§X11 \/§X2, 1)
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Kernel Matrix Characterization

Discussion

e A matrix K is kernel (Gram) matrix if and only if it is

symmetric positive semidefinite.

e Positive semidefiniteness is equivalent to having non-negative
.v = — -
eigenvalues.

\_/
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Popular Kernels

Discussion

e Other popular kernels include the following.

© Linear kernel: Ky = xTx, ~— fUm

@ Polynomial kernel: Ky = (x.” x; + I)O
Radial Basis Function (Gaussian) kernel:

S

1
Kiir = exp (_@(X:‘ —xi) " (xi — Xi’))
By

L
e Gaussian kernel has infinite dimensional feature

representations. There are dual optimization techniques to
find w and b for these kernels.






