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Survey Question
Admin

500‘\611"%. A’(P Ruoom ¢ CS g%@ C

@ Which prerecorded lecture videos have you watched?
e A: Yes

@ B: Lectures 1.2.3,4,5,6

e C: Lectures 1,2,3.4

@ D: Lectures 1,2

e E: No
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Constrained Optimization

Definition

@ The goal is to maximize the margin subject to the constraint
that the plus plane and the minus plane separates the
instances with y; = 0 and y; = 1.

maxXx
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Hard Margin SVM

Definition

ch that (2y; — 1) (wa,- - b) >1,i=1,2,....,n

e This is equivalent to the following minimization problem,
called hard margin SVM.

1/\
m| —wT such that (2y; — 1) (wa, + b) 1,i=1,2,..
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Soft Margin Diagram
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Soft Margin SVM

Definition

e This is equivalent to the following mihimization problem,
called soft margin SVM.
v

A 1 ¢
— ﬁ mmi/nEWTw+;Zmax{0,1—(2y,-—1) (wa,-+b)}

=1
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SVM Weights
Quiz

e Fall 2005 Final Q15 and Fall 2006 Final Q15 [/\M\o{

e Find the weights wy, wy for the SVM classifie “enin,

nd\m
é}

Tq* S
SR Q

e Aiw =0, mp =

.
e B:wg=-2w =0

@\=—1,Wz=—l g
e D:w = -2, wp = -2

@ E: none of the above

Ly xi+woxin+1>0} iven the training data

N
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SVM Weights Diagram
Quiz
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Subgradient Descent
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SVM Weights 2

QD

e Find the weights wy, w; for the SVM classifier ~fnsinda~

ImA”

wiw/
=

]l{wlxilﬂ,zxi@o} given the training data

Quiz

o A: V!1\=—3,W2=—3
e B:wg =4 w = -3
o Cwp=-3,wm=-4
e D:wy =4 w =—4

e E:wg = -8, wp = -8
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Kernel Trick
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SVM Weights 2 Diagram
Quiz
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Soft Margin
Quiz

e Fall 2011 Midterm Q8 and Fall 2009 Final Q1
o Let w= L;\ and b = 3. For the point x = [4] ,y =0, what
| .

Is the(sma

est sls

N 2
(2yi — 1) (WTXi+Lf;) 21-¢,6=20 l

~Y((,2) ;)+3)2 | - ‘f},f)Zo
(T,723 .3 20)
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Soft Margin 2
Quiz

Q5

0 Letw=[1

2

what |
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Subgradient Descent

Definition

min —w' w + — Zmax{O,l —(2y; — 1) (wa,- + b

@ The gradient for the above expression is not defined at points
with 1 — (2y; — 1) (w”x; + b) = 0.

e Subgradient can be used instead of gradient.
—_— -



Support Vector Machines Subgradient Descent Kernel Trick

Q00000000000 C (sl Ielelnls o000CO00Q000

Subgradient

e The subderivative at a point of a convex function in one
dimension is the set of slopes of the lines that are tangent to
the function at that point.

@ The subgradient is the version for higher dimensions.

@ The subgradient 0f (x) is formally defined as the following set.
-

of (x) = {v:f(x') 2f(x)+vT(x'—x) Vx'}
— \ —




Support Vector Machines Subgradient Descent Kernel Trick
wlelelelelelelelelelelnle QOO0 LOQ0OC0O000000

Subgradient 1
Quiz

o Which ones (multiple) are subderivatives of [x| at x = 07
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Subgradient 2 ™ Mffj/

Q//} C nst ) e

l |
e Which ones (select one of them) ar erivatives of

~—7P% max{x.0} at x = 07
e A: -1
e B:-05
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Subgradient Descent Step

Definition

@ One possible set of subgradients with respect to w and b are
the following.

n )
OwC 2 Aw — Z (2yi = 1) Xilgop,_1)(wTxi+b)=1}
i—1
n
0pC 3 — 2 (2yi — 1)Ly 2y —1)(wTx+b)>1}
i=1 T

e The gradient descent step is the same as usual, using one of
the subgradients in place of the gradient.
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PEGASOS Algorithm

Algorithm

e Inputs: instances: {x;}/_, and {z; = 2y; — 1},

m

° Outputs: weights: {w;}

e Initialize the weights.

w; ~ Unif |0,1]

e Randomly permute (shuffle) the training set and performance
subgradient descent for each instance /.

=

W = (1 — )\) w — OtZ,‘l]{ }X,'

C—

ziwT x;=1

—_

@ Repeat for a fixed number of iterations.
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Kernelized SVM

Definition

e With a feature map ¢, the SVM can be trained on new data
points {(¢ (x1),y1), (@ (X2) , ¥2) , ..., (¢ (Xn) . ) }.
——p /\ —_ A
® The weights w correspond to the new features v (x;).

@ T[herefore, test instances are transformed to have the same
new features.
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Kernel Matrix

Definition

@ The feature map is usually represented by a n x n matrix K
called the Gram matrix (or kernel matrix).

WA
V4

Kiir = ¢ ( )7 e (xi)

P
A\\hp
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Examples of Kernel Matrix

Definition

o For example, if ¢ (x) = (x#,v/2x1x2,x3), then the kernel
matrix can be simplified.

2
K,','r = (XiTX,'/)

@ Another example is the quadratic kernel K = (x-Tx,-: + 1)
It can be factored to have the following feature
. Pey)T
representations.

U_'w
'\J(

¥ (X) — (X12*X2 \/§X1X2. \f2x1, \/§X2, 1) \/

Y _
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Examples of Kernel Matrix Derivation
X)g. XL) Z ' 38D efinition

I{;.,r(x-,ijfﬂ)z = <x >(\<,, X,,_)”)

> ( X Koy ¥ K %2 T )

< ) s Ay 7 o
ratk ing

= %) = (X,z/ X, J,@X)Xllﬁx,,rﬂ()
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Popular Kernels
Discussion

@ Other popular kernels include the following.

Q Linear kernel: Ky = x"xy  +——  S\J/W\

@ Polynomial kernel: Kji = (x,-Tx,v + l)d S—

© Radial Basis Function (Gaussian) kernel:

1
= exp (_?(Xi—Xi')T(Xi—Xi') KUM) Qwmn

@ Gaussian kernel has infinite dimensional feature
representations. There are dual optimization techniques to
find w and b for these kernels.
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e March 2018 Final Q17 2 l | J2 )
o SVM with quadratic kernel o (xz?xlxz x3) can
correctly classify the tralmng set for y = x1 XOR x5

@ A: True

. ﬁ\
e B: False. [
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Kernel Trick for XOR 2
Quiz

e SVM with quadratic kernel ¢ (x) = (x{, v2x1x2, X
correctly classify the training set™for y = x; NAND xo. NAND

Is just " not and". — -
Xe X, NAWD
J
. g ]
e B: False. B l l
( v ‘
NN SR
g £ X, = Xy
l O
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Kernel Matrix
Quiz

e Fall 2009 Final Q2

@ What js the feature vector ¢ (x) induced by the kernel
~ K,,/ —E\ : 4 XI ‘./xix"@'l/\ I D

S A (exp (), V5.3 e Xy o Lextmy

euﬂﬂ{, \

o C: ( exp (x), v/X. 3)

o D: (y/exp (x), %, v3)

v
@ E: None of the above

lexpon) [ expeto] +(6) 1 1) )
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Kernel Matrix Math
Quiz
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Kernel Matrix 2
Quiz

& 0T

e What is the feature vector ¢ (x) induced by the kernel
Kir = dexp(x; + x, /) + 2@;,3?

(i
o A: (dexp(x).2¢y/x ==
o><(2exp (x), \/_@ \M ZQ/XﬁX >
o C: (4exp(x),2x)

@: (2€Xp )’\/ﬁx) \&r 7<\ j\g’x )

@ E: None of the above
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Kernel Matrix Math 2
Quiz





