CS540 Introduction to Artificial Intelligence Lecture 5

Young Wu
Based on lecture slides by Jerry Zhu and Yingyu Liang

June 3, 2019

Correction for Lecture 3 Slides

Review

• The gradient descent step formula in Lecture 3 Slides should have $a_i - y_i$ instead of $y_i - a_i$.

$$C = \frac{1}{2} \sum_{i=1}^{n} (a_i - y_i)^2 = \frac{1}{2} \sum_{i=1}^{n} (y_i - a_i)^2$$
$$\frac{\partial C}{\partial a_i} = (y_i - a_i) \cdot (-1) = a_i - y_i$$

The slides are updated.

Maximum Margin Diagram

Motivation not touch data point all Pts classified comectly.

Margin and Support Vectors

Motivation

 The perceptron algorithm finds any line (w, b) that separates the two classes.

$$\hat{y}_i = \mathbb{1}_{\{w^T x_i + b \geqslant 0\}}$$

- The margin is the maximum width (thickness) of the line before hitting any data point.
- The instances that the thick line hits are called support vectors.
- The model that finds the line that separates the two classes with the widest margin is call support vector machine (SVM).

Support Vector Machine

Description

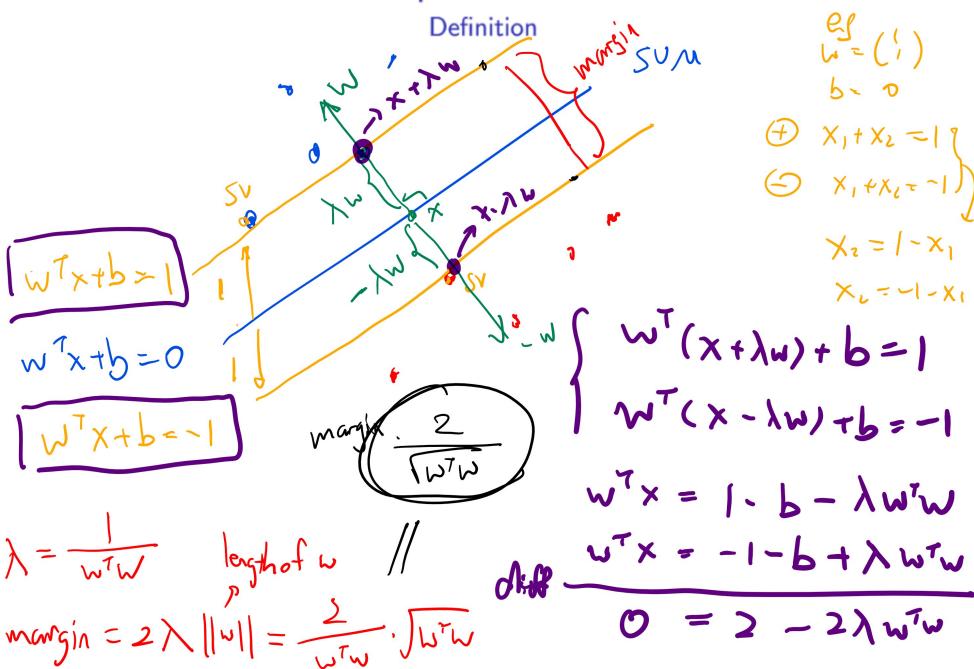
- The problem is equivalent to minimizing the norm of the weights subject to the constraint that every instance is classified correctly (with the margin).
- Use subgradient descent to find the weights and the bias.

Finding the Margin

Definition

- Define two planes: plus plane $w^Tx + b = 1$ and minus plane $w^T + b = -1$.
- The distance between the two planes is $\frac{2}{\sqrt{w^T w}}$.
- If all of the instances with $y_i = 1$ are above the plus plane and all of the instances with $y_i = 0$ are below the minus plane, then the margin is $\frac{2}{\sqrt{w^T w}}$.

Constrained Optimization Derivation



Constrained Optimization

Definition

• The goal is to maximize the margin subject to the constraint that the plus plane and the minus plane separates the instances with $y_i = 0$ and $y_i = 1$.

$$\max_{w} \frac{2}{\sqrt{w^T w}} \text{ such that } \begin{cases} \left(w^T x_i + b\right) \leqslant -1 & \text{if } y_i = 0 \\ \left(w^T x_i + b\right) \geqslant 1 & \text{if } y_i = 1 \end{cases}, i = 1, 2, ..., n$$

$$\text{The two constrains can be combined.} \qquad \text{The plane}$$

$$\max_{w} \frac{2}{\sqrt{w^T w}} \text{ such that } \left(2y_i - 1\right) \left(w^T x_i + b\right) \geqslant 1, i = 1, 2, ..., n$$

$$\text{The plane}$$

$$\text{The p$$

Hard Margin SVM

Definition

$$\max_{w} \frac{2}{\sqrt{w^{T}w}}$$
 such that $(2y_{i}-1)(w^{T}x_{i}+b) \ge 1, i=1,2,...,n$

• This is equivalent to the following minimization problem, called hard margin SVM.

Late word he liveary separable.

 $\min_{w} \frac{1}{2} w^{T} w$ such that $(2y_{i} - 1) (w^{T} x_{i} + b) \ge 1, i = 1, 2, ..., n$

max
$$f(w) \Rightarrow min \frac{1}{f(w)} \Rightarrow min \left(\frac{1}{f(w)}\right)^2 \Rightarrow min 2\left(\frac{1}{f(w)}\right)$$

Hard Margin SVM

Quiz (Participation)

- Fall 2014 Final Q17
- Which of the following transformations can make a hard margin SVM that is working no longer work?

A:
$$x_i = x_i + c, c \in \mathbb{R}^m$$
 for all $i = 1, 2, ..., n$
B: $x_i = x_i \cdot c, c \in \mathbb{R}$ for all $i = 1, 2, ..., n$

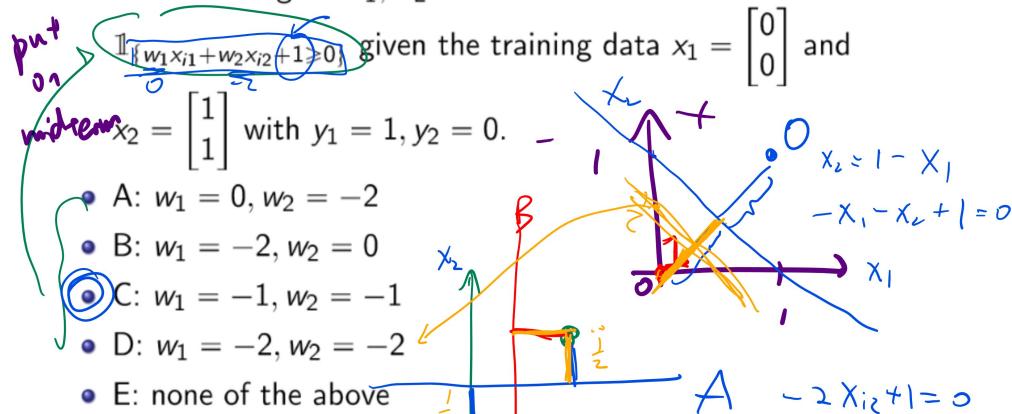
B:
$$x_i = x_i \cdot c, d \in \mathbb{R}$$
 for all $i = 1, 2, ..., n$

- \swarrow C: Rotated the instances in \mathbb{R}^m around the origin.
- D: Swap 1st and 2nd coordinates, $x_{i1} \Leftrightarrow x_{i2}$ for all i = 1, 2, ..., n
- E: Do not choose this.

SVM Weights

Quiz (Graded)

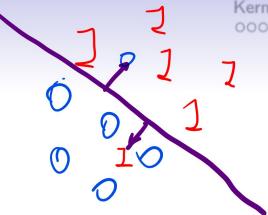
- Fall 2005 Final Q15 and Fall 2006 Final Q15
- Find the weights w_1, w_2 for the SVM classifier



mis classification

Soft Margin

Definition



- To allow for mistakes classifying a few instances, slack variables are introduced.
- The cost of violating the margin is given by some constant $\frac{1}{3}$.
- Using slack variables ξ_i , the problem can be written as the following.

• Using slack variables
$$\xi_i$$
, the problem can be written as the following.

Out for every e mixtake

 $\lim_{w \to \infty} w^T w + \frac{1}{\lambda} \frac{1}{n} \sum_{i=1}^{n} \xi_i$

in using direction

such that
$$(2y_i - 1) (w^T x_i + b) \ge 1 - \xi_i, \xi_i \ge 0, i = 1, 2, ..., n$$

Soft Margin SVM

Definition

$$\min_{w = \frac{1}{2}} w^{T} w + \frac{1}{\lambda} \frac{1}{n} \sum_{i=1}^{n} \xi_{i}$$
such that $(2y_{i} - 1) (w^{T} x_{i} + b) \ge 1 - \xi_{i}, \xi_{i} \ge 0, i = 1, 2, ..., n$

 This is equivalent to the following minimization problem, called soft margin SVM.

$$\min_{w} \frac{\lambda}{2} w^{T} w + \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 0, 1 - (2y_{i} - 1) \left(w^{T} x_{i} + b \right) \right\}$$

Subgradient Descent

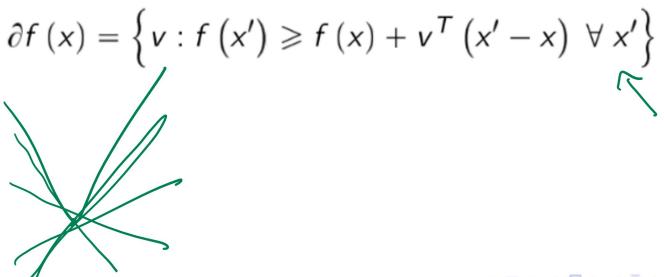
Definition

$$\min_{w} \frac{\lambda}{2} w^{T} w + \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 0, 1 - (2y_{i} - 1) \left(w^{T} x_{i} + b \right) \right\}$$

- The gradient for the above expression is not defined at points with $1 (2y_i 1)(w^Tx_i + b) = 0$.
- Subgradient can be used instead of gradient.

Subgradient

- The subderivative at a point of a convex function in one dimension is the set of slopes of the lines that are tangent to the function at that point.
- The subgradient is the version for higher dimensions.
- The subgradient $\partial f(x)$ is formally defined as the following set.



Subgradient, Part I

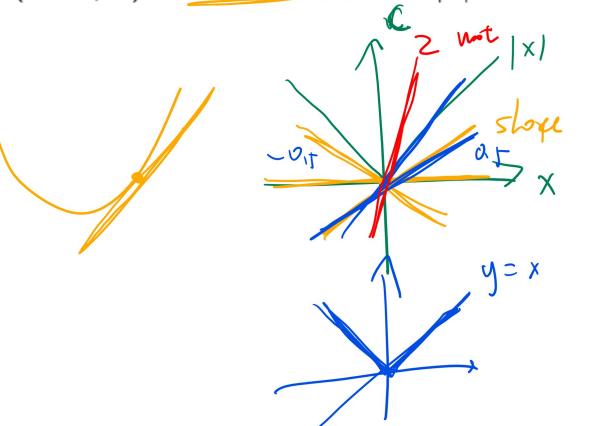
Quiz (Participation)

• Which ones (multiple) are subderivatives of |x| at x = 0?

✓ A: -1

• B: -0.5

D: 0.5E: 1



Subgradient, Part II

Quiz (Graded)

• Which ones (multiple) are subderivatives of $\max\{x,0\}$ at

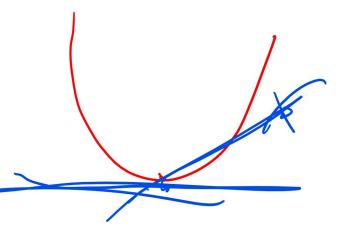
Subgradient, Part II

Quiz (Graded)

Which ones (multiple) are subderivatives of $\max \{x^2, 0\}$

$$x = 0$$
?

- A: -1
- B: -0.5
- C: 0
- D: 0.5
- E: 1



Subgradient Descent Step

Definition

 One possible set of subgradients with respect to w and b are the following.

$$\forall e \leq \sum_{i=1}^{n} (2y_{i} - 1) x_{i} \mathbb{1}_{\{(2y_{i} - 1)(w^{T}x_{i} + b) \geq 1\}}$$

$$\partial_{b} C \ni -\sum_{i=1}^{n} (2y_{i} - 1)) \mathbb{1}_{\{(2y_{i} - 1)(w^{T}x_{i} + b) \geq 1\}}$$

 The gradient descent step is the same as usual, using one of the subgradients in place of the gradient.

Class Notation and Bias Term

Definition

• Usually, for SVM, the bias term is not included and updated. Also, the classes are -1 and +1 instead of 0 and 1. Let the labels be $z_i \in \{-1, +1\}$ instead of $y_i \in \{0, 1\}$. The gradient steps are usually written the following way.

usually written the following way.
$$w = (1 - \lambda) w - \alpha \sum_{i=1}^{n} z_i x_i \mathbb{1}_{\{z_i w^T x_i \ge 1\}} \quad \text{add} \quad x_j - 1$$

$$z_i = 2y_i - 1, i = 1, 2, ..., n$$

Regularization Parameter

Definition

$$w = (1 - \lambda) w - \alpha \sum_{i=1}^{n} z_i x_i \mathbb{1}_{\{z_i w^T x_i \ge 1\}}$$
$$z_i = 2y_i - 1, i = 1, 2, ..., n$$

 The parameter λ is slightly different from the one from the previous slides. λ is usually called the regularization parameter because it reduces the magnitude of w the same way as the parameter λ in L2 regularization.

Frimated

- Inputs: instances: $\{x_i\}_{i=1}^n$ and $\{z_i = 2y_i 1\}_{i=1}^n$
- Outputs: weights: $\{w_j\}_{j=1}^m$
- Initialize the weights.

$$w_j \sim \text{Unif } [0,1]$$

SOlver For Sum

 Update the weights using subgradient descent for a fixed number of iterations.

$$w = (1 - \lambda) w - \alpha \sum_{i=1}^{n} z_i x_i \mathbb{1}_{\{z_i w^T x_i \ge 1\}}$$

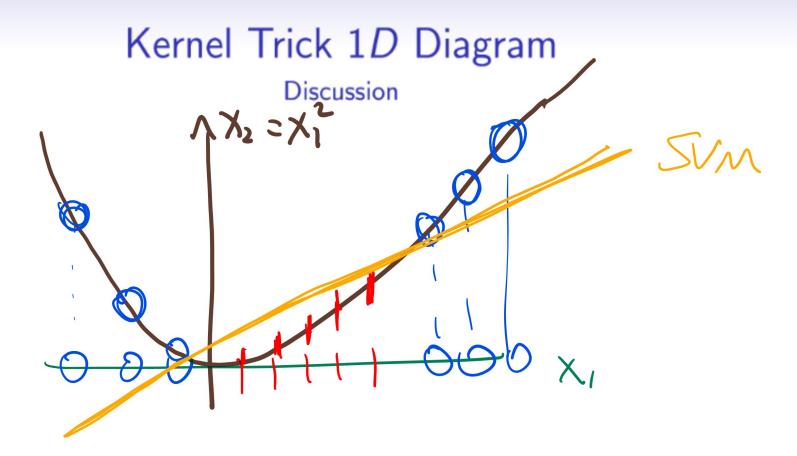
Kernel Trick

Discussion

- If the classes are not linearly separable, more features can be created.
- For example, a 1 dimensional x can be mapped to $\phi\left(x\right) = \left(x, x^2\right).$

• Another example is to map a 2 dimensional
$$(x_1, x_2)$$
 to $\phi(x = (x_1, x_2)) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$.

$$\phi(x = (x_1, x_2)) = (x_1^2, \sqrt{2}x_1x_2, x_2^2).$$



Kernelized SVM

Discussion

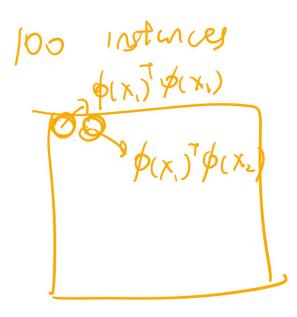
- With a kernel ϕ , the SVM can be trained on new data points $\{(\phi(x_1), y_1), (\phi(x_2), y_2), ..., (\phi(x_n), y_n)\}.$
- The weights w correspond to the new features $\phi(x_i)$.
- Therefore, test instances are transformed to have the same new features.

$$\hat{y}_i = \mathbb{1}_{\{w^T\phi(x_i) \geq 0\}}$$

Kernel Matrix

Discussion

 The kernel is usually represented by a n × n matrix K called the Gram matrix.



Examples of Kernel Matrix

Discussion

• For example, if $\phi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$, then the kernel matrix can be simplified.

$$K_{ij} = \left(x_i^T x_j\right)^2$$

• Another example is the quadratic kernel $K_{ij} = (x_i^T x_j + 1)^2$. It can be factored to have the following feature representations.

$$\phi(x) = \left(x_1^2, x_2^2, \sqrt{2}x_1x_2, x_1, x_2, 1\right)$$

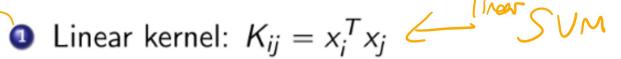
Kernel Matrix Characterization

Discussion

 A matrix K is kernel (Gram) matrix if and only if it is symmetric positive semidefinite.

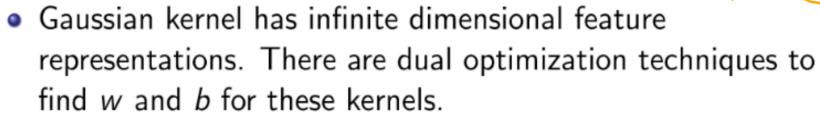
Popular Kernels

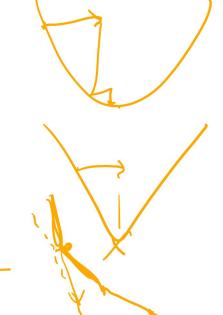
Discussion



- 2 Polynomial kernel: $K_{ij} = (x_i^T x_j + 1)^{\frac{d}{2}}$
- Radial Basis Function (Gaussian) kernel:

$$K_{ij} = \exp\left(-\frac{1}{\sigma^2} \left(x_i - x_j\right)^T \left(x_i - x_j\right)\right)$$





Kernel Trick for XOR

Quiz (Graded)

- March 2018 Final Q17
- SVM with quadratic kernel $\phi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$ can correctly classify the training set for XOR.
- A: True.
- B: False.
- C: Do not choose this.
- D: Do not choose this.
- E: Do not choose this.

Kernel Matrix

Quiz (Graded)

- Fall 2009 Final Q2
- What is the feature vector $\phi(x)$ induced by the kernel $K_{ij} = \exp(x_i + x_j) + \sqrt{x_i x_j} + 3?$
- A: $(\exp(x), \sqrt{x}, 3)$
- B: $(\exp(x), \sqrt{x}, \sqrt{3})$
- C: $\left(\sqrt{\exp(x)}, \sqrt{x}, 3\right)$
- D: $\left(\sqrt{\exp(x)}, \sqrt{x}, \sqrt{3}\right)$
- E: None of the above