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Correction for Lecture 3 Slides

Review

@ The gradient descent step formula in Lecture 3 Slides should
have a; — y; instead of y; — a;.
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@ The slides are updated.
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Maximum Margin Diagram

Motivation
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Margin and Support Vectors

Motivation

@ The perceptron algorithm finds any line (w, b) that separates
the two classes.

A

Yi = LT a1 b0}

@ The margin is the maximum width (thickness) of the line
before hitting any data point.

@ The instances that the thick line hits are called support
vectors.

@ The model that finds the line that separates the two classes
with the widest margin is call support vector machine (SVM).
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Support Vector Machine

Description

@ The problem is equivalent to minimizing the norm of the
weights subject to the constraint that every instance is
classified correctly (with the margin).

@ Use subgradient descent to find the weights and the bias.
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Finding the Margin

Definition

o Define two planes: plus plane w’x + b = 1 and minus plane

w7;{+ b= —1.

2
@ The distance between the two planes is :
vwlw

e If all of the instances with y; = 1 are above the plus plane and
all of the instances with y; = 0 are below the minus plane,

VwTw

then the margin is
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Constrained Optimization Derivation

Definition ®

WT(Xf)\u)f b-’—,

—F\ —"  wix= [ L= Aww
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Constrained Optimization

Definition

@ The goal is to maximize the margin subject to the constraint
that the plus plane and the minus plane separates the
instances with y; = 0 and y; = 1.

2 Tx;+b) < -1 ify;=0
max such that (wa ) I Y i=1,2,....n
w VwTw (w'x; + b) > 1 ify, =1
o ¢ losi By comedy b —+ ploe
@ The two constrains can be combined. L rlme
° h that (2y; — 1) (w'x; + b m
max such that ((2y; — (w X; + )/ oF mm Lo L i )
\WH w VwTw
ol%(m ) 0, | N0 = —’

|I/\’fel¥‘(‘)7°"'k ~[ , l D;L\ y ‘



Support Vector Machines Kernel Tric
000000000000000000000 000000000

Hard Margin SVM

Definition

max such that (2y; — 1) (wa,- - b) >1,i=1,2,....n
w VwTw

e This is equivalent to the following minimization problem,

called hard ma%g::\ SVX;\@, . he ("’”ec'r_(j Scf&\fo\lo\«(—..

1
min §WTW such that (2y; — 1) (wa,- + b) >1,1=12,....n

My ~C(\,J) - , \ 77 . L p o
=) |mia m = ma (f(;) _/aw:,zég‘)
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Hard Margin SVM

Quiz (Participation)

e Fall 2014 Final Q17

@ Which of the following transformations can make a hard
. . - \
margin SVM that is working no longer work?

A x,—x,+cceR’"foraIIl—12} o
x,—x,@\eRforalll—l 3 /\
\¢"C: Rotated the Sndances in R™ aroundgth@ origim.

}{ D: Swap 1st and 2nd coordinates, x;; < xj» for all
I=1,2,....n

@ E: Do not choose this.
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SVM Weights
7

Quiz (Graded)
|\~

o Fall 2005 Final Q15 and Fall 2006 Final Q15

e Find the weights wy, wy for the SVM classifier

P

oA

.: Wy = —2, Wy = —2 I ""“E

@ E: none of the above '
’4’"\) X
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Gllow Soft Margin
WIL} C lq», 'GS[%._., Definition

=S ol an,

e To allow for mistakes classifying a few instances, slack
variables are introduced.

. L 1
@ The cost of violating the margin is given by some constant e

@ Using slack variables &;, the problem can be written as the

following. fashl L. overp§® stake

for

\ “"\lfTalc,Q, = "\0""
W f A ij Q{N"e(.w/l

such that ( 2y,—1 w x,+b 21-¢§,6i=20,i=12,...n
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Soft Margin SVM

Definition

(mmulrlz_w W+/\n;§'
) J
such that( (2y; — 1) (wa, - b) > 1V &.6=20,i=1,2,...,n

e This is equivalent to the following minimization problem,
called soft margin SVM.

[ 2 V‘E:)u WWM\M \’\"B,Q, LOSS‘
A T 1 -
min > w w+anax 0,1- (2y,—1)(w x,-+b)}

=1 o
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Subgradient Descent

Definition

mmEW Tw+ = Zmax{ — (2y; — 1) (WTX;-I—b)}

w

e The gradient for the above expression is not defined at points
with 1 — (2y; — 1) (w”x; + b) = 0.
e Subgradient can be used instead of gradient.
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Subgradient

e The subderivative at a point of a convex function in one
dimension is the set of slopes of the lines that are tangent to
the function at that point.

@ The subgradient is the version for higher dimensions.

e The subgradient 0f (x) is formally defined as the following set.

of (x) = {v:f(x') >f(x)+v (¥ —x) ‘v’x’}

N
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Subgradient, Part |

Quiz (Participation)

——

DIx| = (-
e Which ones (multiple) are subderivatives of |x| at x = 07

\9’A: -1 ,x)
e B:-0.5

\_LDIO.5
\7E:1

2 Wit
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Subgradient, Part |l

@ Quiz (Graded)

O wenf g, v5e (oo k)

o Which ones (multiple) are subderivatives of max {x, 0} at

p—

x =07 — —
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Subgradient, Part |l
Quiz (Graded)

—_— >
_

@Which ones (multiple) are subderivatives of/max {xz, 0y at

x = 07 -
o A:-1 (
e B:-0.5 -
v %
e D: 0.5

e E: 1
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Subgradient Descent Step

Definition

@ One possible set of subgradients with respect to w and b are

the following. :

wE DS ;
U s
St 0pC 35 — Z (2yi = 1)) L2y, —1)(wTx+b)>1) 5 /
=1

@ The gradient descent step is the same as usual, using one of

the subgradients in place of the gradient.
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Class Notation and Bias Term

Definition

e Usually, for SVM, the bias term is not included and updated.

Also, the e -1 and +1 instead of 0 and 1. Let the
labels b€ z; € {—1, +1Dinstead of y; € {0,1}. The gradient
steps are usually written the following way.

\,J'a,/\‘(/ ’/)2’
n /Y

w = (1—/\)W_szixiﬂ{z;wrx,-zl} o dl Xj'f'
(

i=1_

zi=2yi—1,1=1,2,...,n CoNgtent, fertuve
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Regularization Parameter

Definition

n
w = (]_ —_ /\) w — Z ZI'X:":[I{ZI'WTX,'EJ-}
=1
zi=2yi—1,i=1,2,...,n

@ The parameter A is slightly different from the one from the
previous slides. A is usually called the regularization parameter
because it reduces the magnitude of w the same way as the
parameter A\ in L2 regularization.
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@Algorithm Er}mal
gorithm

Inputs: instances: {x;}:_; and {z; = 2y; — 1}7;’ A
| i~ Lo, Qe A dent
Outputs: weights: {Wj}j=1 —_— —
Initialize the weights. S O l doi
w; ~ Unif |0, 1] E"

Update the weights using subgradient descent for a fixed
number of iterations.

n
i=1
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Kernel Trick

Discussion

e If the classes are not linearly separable, more features can be
created.

@ For example, a 1 dimensional x can be mapped to
o (x) = (x x2).

@ Another example is to map a 2 dimensional ( /\5 X2 /50
o (x = (x1,x0)) = (xl,ﬁx1x2 x22)
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Kernel Trick 1D Diagram

Discussion

/\Xg 27(;—
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Kernelized SVM

Discussion

e With a kernel ¢, the SVM can be trained on new data points

{(gb (Xl) ayl) / (Qb (XZ) w}/2) PERE) (gb (Xn) 7yn)}°

@ The weights w correspond to the new features ¢ (x;).

@ [ herefore, test instances are transformed to have the same
new features.

Vi = LwTo(x)=0)
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Kernel Matrix

Discussion

@ The kernel is usually represented by a n x n matrix K called
the Gram matrix.

[0o %fﬁj‘;‘(“j Kg=¢(>;é)T¢(Xj)
(%) POR

\\/\dma \)

———

INstAnce \,

I
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Examples of Kernel Matrix

Discussion

o For example, if ¢ (x) = (X, v/2x1x2, X3 ), then the kernel
matrix can be simplified.

2
Kij = (X:'TXJ)

@ Another example is the quadratic kernel Kj; = (X-ij + 1)2. It

/
can be factored to have the following feature representations.

¢(x) = (Xfpxgp\/ixlx2uxlaxzpl)
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Kernel Matrix Characterization

Discussion

@ A matrix K is kernel (Gram) matrix if and only if it is
symmetric positive semidefinite.
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Popular Kernels

Discussion

@ Other popular kernels include the following.

T

@ Linear kernel: Kjj = x;' x;

@ Polynomial kernel: Kj; = (x-ij + l)d

/

© Radial Basis Function (Gaussian) kernel:
1
K,'j = €eXp (—? (X,' — Xj)T (X,' — Xj))

@ Gaussian kernel has infinite dimensional feature
representations. There are dual optimization techniques to
find w and b for these kernels.
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Kernel Trick for XOR

Quiz (Graded)

@ March 2018 Final Q17

e SVM with quadratic kernel ¢ (x) = (xlz,, ﬁxm,xzz) can
correctly classify the training set for XOR.

e A: True.
e B: False.
@ C: Do not choose this.
@ D: Do not choose this.

@ E: Do not choose this.
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Kernel Matrix
Quiz (Graded)

e Fall 2009 Final Q2

e What is the feature vector ¢ (x) induced by the kernel
Kij = exp (x; + Xxj) + /Xix; + 37

o A: (exp ()f 3)

e B: (e 3)

OC( ex x3)

oD( exp (x \/_\/_)
E: None of the above





