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Correction for Lecture 3 Slides

Review

@ The gradient descent step formula in Lecture 3 Slides should
have a; — y; instead of y; — a;.

C=%Z(ai—Yi)2=%Z(YI_ai)2

dC
35, ~vima)-(ml)=ai—y

@ The slides are updated.
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Maximum Margin Diagram

Motivation
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Margin and Support Vectors

Motivation

@ The perceptron algorithm finds any line (w, b) that separates
the two classes.

Al

W = ﬂ{wa;erEBO}

@ The margin is the maximum width (thickness) of the line
before hitting any data point.

@ The instances that the thick line hits are called support
vectors.

@ The model that finds the line that separates the two classes
with the widest margin is call support vector machine (SVM).
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Support Vector Machine

Description

@ The problem is equivalent to minimizing the norm of the
weights subject to the constraint that every instance is
classified correctly (with the margin).

@ Use subgradient descent to find the weights and the bias.
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Finding the Margin

Definition

o Define two planes: plus plane w’x + b = 1 and minus plane

wix+b=—1.
2
@ The distance between the two planes is :
vwlw

e If all of the instances with y; = 1 are above the plus plane and
all of the instances with y; = 0 are below the minus plane,

then the margin is
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Constrained Optimization Derivation

Definition

Lernel Trick
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Constrained Optimization

Definition

@ The goal is to maximize the margin subject to the constraint
that the plus plane and the minus plane separates the
instances with y; = 0 and y; = 1.
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Hard Margin SVM

Definition

£20 \
Moy P = Min ’\JC~ =3 "V”"__EZ - M’{’é—{_

2
max such that (2y; — 1) (wa,- - b) >1,i=1,2,....n

w VwTw

e This is equivalent to the following minimization problem,
called hard margin SVM.

1
min §WTW such that (2y; — 1) (wa,- + b) >1,1=12,...,n
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SVM Weights

@ Quiz (Graded)

e Fall 2005 Final Q15 and Fall 2006 Final Q15
e Find the weights wy, wy for the SVM classifier

E : . 0
S\IM \]EWIXi1+W2Xi2+DOJ given the training data x; = 0 and

R

e A:w =0, wp = -2

e B:wp=-2,wm=0

@C: wp = =1, wp = —1

e D:wp = -2 wp =-2 X, | 7x'\l
d\@L @ E: none of the above | X,=1-X

9 = Ko 11 2% %rg covvect . e. L
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Soft Margin 1 I p,,guq
Definition ) A —

e To allow for mistakes classifying a few instances, slack
variables are introduced.

@ The cost of violating the margin is given by some constant

9 Usun&siacE varlag les £;, the problem can be writte
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Soft Margin SVM

Definition

)\ min W w+——Z>E6/

such that (Ql) (w Xj + b

S

e This is equivalent to the following minimization problem,
called soft margin SVM. %l

N min—w w+ — Zmax{ —(2y; — 1) (wa;+b }

N I1Z~ -
,\V VJMA‘j’\cO =) O
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Subgradient Descent

Definition

LZ V\%V\IW"U’W "y l/\l'/\\!Se/ lvd Cost ‘(‘%pa,@,‘

$3
N | >~
2

s‘
<
S |-
gt

ax {o, 1— (2y; — 1) (wa,- +b

—
Il
p—

@ The gradient for the above expression is not defined at points
with 1 — (2y; — 1) (w”x; + b) = 0.

e Subgradient can be used instead of gradient.
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Subgradient

e The subderivative at a point of a convex function in one
dimension is the set of slopes of the lines that are tangent to
the function at that point.

e The subgradient is the version for higher dimensions.

@ The subgradient df (x) is formally defined as the following set.

6f(x)={v:f(x') >f(x)+ v (X' —x) ‘v’x’}
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Subgradient, Part | ey e

Quiz (Participation)

gt = (-0

e Which ones (multiple) are subderivatives of |x| at x = 07
o A: -1 NI
v e B:-0.5
v e C0
v @ D: 0.5
ve E: 1
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Subgradient, Part |
Quiz (Graded)

@

e Which ones (multiple) are subderivatives of max {x, 0} at

x =07 j
- Wij“&, P‘"’Q}
%2: -0.5
o C: 0
e D: 0.5
o E: 1
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Subgradient Descent Step

Definition

@ One possible set of subgradients with respect to w and b are
the following. A L

ik
; / \,\03"‘”’”{ et .

owC 3w = ) (2 = 1) Xiljay,_1ywTxab)>1) € O, C
i—1

n
Z (2y; — 12— 1)(wTx;+b)=>1}

@ The gradient descent step is the same as usual, using one of
the subgradients in place of the gradient.
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Class Notation and Bias Term

Definition

e Usually, for SVM, the bias term is not included and updated.
Also, the classes are -1 and +1 instead of 0 and 1. Let the
labels be z; € {—1, +1} instead of y; € {0,1}. The gradient
steps are usually written the following way.

n

w=(L=Nw=a) zixl ey
i=1 \
zi=2yi—1,1=1,2,...,n ‘(“\9‘

[me L & old —\\@q‘v\m corstint , j
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Regularization Parameter

Definition

)\ ,Ql)sés | ke /gw/GT/&TW Term

@ The parameter A is slightly different from the one from the
previous slides. A is usually called the regularization parameter
because it reduces the magnitude of w the same way as the
parameter A in L2 regularization.
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Pegasos Algorithm

Algorithm

o Inputs: instances: {x;}'_; and {z; = 2y; — 1},

e Outputs: weights: {WJ}Jm:l

e Initialize the weights.

w; ~ Unif |0, 1]

e Update the weights using subgradient descent for a fixed
number of iterations.

n
i=1
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Discussion ‘L

Support Vector Machines
( YOO ( )OO (YOO OO OO )

e If the classes are not linearly separable, more features can be
created.

@ For example, a 1 dimensional x can be mapped to
é(x) = (x,x%).
@ Another example is

¢ (x = (x1,x2))

imensional (xj, x2) to
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Kernel Trick 1D Dia

Discussion

Xz. = Xl‘
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Kernelized SVM

Discussion

e With a kernel ¢, the SVM can be trained on new data points

{(gb (Xl) ayl) / (Qb (XZ) w}/2) PERE) (gb (Xn) 7yn)}°

@ The weights w correspond to the new features ¢ (x;).

@ [ herefore, test instances are transformed to have the same
new features.

Vi = LwTo(x)=0)
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Kernel Matrix

Discussion

@ The kernel is usually represented by a n x n matrix K called
the Gram matrix.

L/’ 0(}«‘/0_ Poﬂntj
Ki=¢(x)" ¢(x)
\  date 7t

Itoncg
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Examples of Kernel Matrix

Discussion

o For example, if ¢ (x) = (X, v/2x1x2, X3 ), then the kernel
matrix can be simplified.

2
Kij = (X:'TXJ)

@ Another example is the quadratic kernel Kj; = (X-ij + 1)2. It

/
can be factored to have the following feature representations.

¢(x) = (Xfpxgp\/ixlx2uxlaxzpl)
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Kernel Matrix Characterization

Discussion

@ A matrix K is kernel (Gram) matrix if and only if it is
symmetric positive semidefinite.
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Popular Kernels

Discussion

@ Other popular kernels include the following.

Q Linear kernel: Kjj = x'x; = Jbmn

/

@ Polynomial kernel: Kjj = (x;" x; t_l_)d
© Radial Basis Function (Gaussian) kernel:

exp (=3 (5= )T (= ) ) €—

e Gaussian kernel has infinite dimensional feature
representations. There are dual optimization techniques to

———

find w and b for these kernels.
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Kernel Trick for XOR

Quiz (Graded)

e March 2018 Final Q17

o SVM with quadratic kernel ¢ (x) = (x§,v2x1x2,x3) can
correctly classify the training set for XOR.

@ A: True. ¢ ¢
e B: False. Ql (; gjg fn & Y
O
@ C: Do not choose this. 5 Cl) (l? I/ ]
. : |
@ D: Do not choose this. = > B O O 5
e E: Do not choose this. ‘bf l J> | I @,
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Kernel Matrix
Quiz (Graded)

e Fall 2009 Final Q2

e What is the feature vector ¢ (x) induced by the kernel
Ku = exp (x; + x;) + 1/x, + 37

A: (exp ( V%3 ) (%:) Px
(oot 543 ;5 )75 i,

o C: \/exp—\/;(3> *Q} D(JQXP())")\)
:(\/exp—x,ﬁ,ﬁ) L(Mcy/ v, 3)

@ E: None of the above %

QK}{X,' X)) x\'y)—k% - )C)





