CS540 Introduction to Artificial Intelligence Lecture 5

Young Wu
Based on lecture slides by Jerry Zhu and Yingyu Liang

June 6, 2019

Correction for Lecture 3 Slides

Review

• The gradient descent step formula in Lecture 3 Slides should have $a_i - y_i$ instead of $y_i - a_i$.

$$C = \frac{1}{2} \sum_{i=1}^{n} (a_i - y_i)^2 = \frac{1}{2} \sum_{i=1}^{n} (y_i - a_i)^2$$
$$\frac{\partial C}{\partial a_i} = (y_i - a_i) \cdot (-1) = a_i - y_i$$

The slides are updated.

Maximum Margin Diagram

Motivation

Margin and Support Vectors

Motivation

 The perceptron algorithm finds any line (w, b) that separates the two classes.

$$\hat{y}_i = \mathbb{1}_{\{w^T x_i + b \geqslant 0\}}$$

- The margin is the maximum width (thickness) of the line before hitting any data point.
- The instances that the thick line hits are called support vectors.
- The model that finds the line that separates the two classes with the widest margin is call support vector machine (SVM).

Support Vector Machine

Description

- The problem is equivalent to minimizing the norm of the weights subject to the constraint that every instance is classified correctly (with the margin).
- Use subgradient descent to find the weights and the bias.

Finding the Margin

Definition

- Define two planes: plus plane $w^Tx + b = 1$ and minus plane $w^Tx + b = -1$.
- The distance between the two planes is $\frac{2}{\sqrt{w^T w}}$.
- If all of the instances with $y_i = 1$ are above the plus plane and all of the instances with $y_i = 0$ are below the minus plane, then the margin is $\sqrt{\frac{2}{\sqrt{w^T w}}}$.

Constrained Optimization Derivation

Definition

Constrained Optimization

Definition

• The goal is to maximize the margin subject to the constraint that the plus plane and the minus plane separates the instances with $y_i = 0$ and $y_i = 1$.

$$\max_{w} \frac{2}{\sqrt{w^T w}} \text{ such that } \left\{ \underbrace{\begin{pmatrix} w^T x_i + b \end{pmatrix} \leqslant -1}_{w^T x_i + b} \text{ if } y_i = 0, \dots, n \atop (w^T x_i + b) \geqslant 1}_{i \neq y_i = 1} \text{ if } y_i = 1, 2, \dots, n \right\}$$

The two constrains can be combined.

$$\max_{w} \frac{2}{\sqrt{w^T w}} \text{ such that } (2y_i - 1) \left(w^T x_i + b \right) \ge 1, i = 1, 2, ..., n$$

$$0 = 0 \implies 1$$

$$0 = 0 \implies 1$$

Hard Margin SVM

Definition

$$\max_{w} \frac{2}{\sqrt{w^{T}w}} \text{ such that } (2y_{i}-1)\left(w^{T}x_{i}+b\right) \geqslant 1, i=1,2,...,n$$

 This is equivalent to the following minimization problem, called hard margin SVM.

$$\min_{w} \frac{1}{2} w^{T} w$$
 such that $(2y_{i} - 1) (w^{T} x_{i} + b) \ge 1, i = 1, 2, ..., n$

SVM Weights

Quiz (Graded)

- Fall 2005 Final Q15 and Fall 2006 Final Q15
- Find the weights w_1, w_2 for the SVM classifier

$$\mathbb{1}_{\{w_1x_{i1}+w_2x_{i2}+1\geqslant 0\}}$$
 give

 $\mathbb{I}_{\{w_1x_{i1}+w_2x_{i2}+1\geqslant 0\}}$ given the training data $x_1=$

$$x_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 with $y_1 = 1, y_2 = 0.$

• A:
$$w_1 = 0$$
, $w_2 = -2$

• B:
$$w_1 = -2$$
, $w_2 = 0$

C:
$$w_1 = -1, w_2 = -1$$

• D:
$$w_1 = -2, w_2 = -2$$

E: none of the above

Soft Margin

Definition

- To allow for mistakes classifying a few instances, slack variables are introduced.
- The cost of violating the margin is given by some constant $\frac{1}{\sqrt{1}}$
- Using slack variables ξ_i , the problem can be written as the

$$\min_{w} \frac{1}{2} w^T w + \frac{1}{\lambda} \frac{1}{h} \sum_{i=1}^{n} \xi_i$$

such that
$$(2y_i - 1)(w^Tx_i + b) \ge 1 - \xi_i, \xi_i \ge 0, i = 1, 2, ..., n$$

Soft Margin SVM

Definition

$$\lim_{w} \frac{1}{2} w^{T} w + \frac{1}{\lambda} \frac{1}{n} \sum_{i=1}^{n} \xi_{i}$$
such that $(2y_{i} - 1) \left(w^{T} x_{i} + b \right) \ge 1 - \xi_{i}, \xi_{i} \ge 0, i = 1, 2, ..., n$

 This is equivalent to the following minimization problem, called soft margin SVM.

$$\min_{w} \frac{\lambda}{2} w^{T} w + \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 0, 1 - (2y_{i} - 1) \left(w^{T} x_{i} + b \right) \right\}$$

$$\text{Then } \left\{ 0, 0 \right\} = 0$$

Subgradient Descent

Definition

$$\min_{w} \left(\frac{\lambda}{2} w^{T} w \right) + \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 0, 1 - (2y_{i} - 1) \left(w^{T} x_{i} + b \right) \right\}$$

- The gradient for the above expression is not defined at points with $1 (2y_i 1)(w^Tx_i + b) = 0$.
- Subgradient can be used instead of gradient.

Subgradient

- The subderivative at a point of a convex function in one dimension is the set of slopes of the lines that are tangent to the function at that point.
- The subgradient is the version for higher dimensions.
- The subgradient $\partial f(x)$ is formally defined as the following set.

$$\partial f\left(x\right) = \left\{v: f\left(x'\right) \geq f\left(x\right) + v^{T}\left(x' - x\right) \ \forall \ x'\right\}$$

Subgradient, Part I

Quiz (Participation)

$$\int_{X} |x| = \left[-1, 1\right]$$

• Which ones (multiple) are subderivatives of |x| at x = 0?

• A: -1

✓ • B: -0.5

✓ • C: 0

✓ • D: 0.5

(∕ • E: 1

Subgradient, Part II

Quiz (Graded)

• Which ones (multiple) are subderivatives of $\max \{x, 0\}$ at

$$x = 0$$
?

• A: -1

A B: -0.5

- C: 0
- D: 0.5
- E: 1

3 mrx(x o)= [0,]]

Subgradient Descent Step

Definition

 One possible set of subgradients with respect to w and b are the following.

following.
$$\partial_w C \ni \lambda w - \sum_{i=1}^n (2y_i - 1) x_i \mathbb{1}_{\{(2y_i - 1)(w^T x_i + b) \geqslant 1\}} \subset \partial_w C$$

$$\partial_b C \ni -\sum_{i=1}^n (2y_i - 1)) \mathbb{1}_{\{(2y_i - 1)(w^T x_i + b) \geqslant 1\}}$$

 The gradient descent step is the same as usual, using one of the subgradients in place of the gradient.

Class Notation and Bias Term

Definition

• Usually, for SVM, the bias term is not included and updated. Also, the classes are -1 and +1 instead of 0 and 1. Let the labels be $z_i \in \{-1, +1\}$ instead of $y_i \in \{0, 1\}$. The gradient steps are usually written the following way.

$$w = (1 - \lambda) w - \alpha \sum_{i=1}^{n} z_i x_i \mathbb{1}_{\{z_i w^T x_i \ge 1\}}$$

$$z_i = 2y_i - 1, i = 1, 2, ..., n$$

$$\text{here b} \iff \text{add} \quad \text{-feature constant}$$

Regularization Parameter

Definition

Now in the regularization term
$$w = (1 - \lambda) w - \alpha \sum_{i=1}^{n} z_i x_i \mathbb{1}_{\{z_i w^T x_i \ge 1\}}$$

$$z_i = 2y_i - 1, i = 1, 2, ..., n$$

 The parameter λ is slightly different from the one from the previous slides. λ is usually called the regularization parameter because it reduces the magnitude of w the same way as the parameter λ in L2 regularization.

Pegasos Algorithm

Algorithm

- Inputs: instances: $\{x_i\}_{i=1}^n$ and $\{z_i = 2y_i 1\}_{i=1}^n$
- Outputs: weights: $\{w_j\}_{j=1}^m$
- Initialize the weights.

$$w_j \sim \text{Unif } [0,1]$$

 Update the weights using subgradient descent for a fixed number of iterations.

$$w = (1 - \lambda) w - \alpha \sum_{i=1}^{n} z_i x_i \mathbb{1}_{\{z_i w^T x_i \ge 1\}}$$

Kernel Trick

Discussion

- If the classes are not linearly separable, more features can be created.
- For example, a 1 dimensional x can be mapped to $\phi(x) = (x, x^2)$.
- Another example is to map a 2 dimensional (x_1, x_2) to $\phi(x = (x_1, x_2)) = (x_1^2, \sqrt{2}x_1x_2, x_2^2).$

Kernelized SVM

Discussion

- With a kernel ϕ , the SVM can be trained on new data points $\{(\phi(x_1), y_1), (\phi(x_2), y_2), ..., (\phi(x_n), y_n)\}.$
- The weights w correspond to the new features $\phi(x_i)$.
- Therefore, test instances are transformed to have the same new features.

$$\hat{y}_i = \mathbb{1}_{\{w^T \phi(x_i) \geq 0\}}$$

Kernel Matrix

Discussion

 The kernel is usually represented by a n × n matrix K called the Gram matrix.

$$K_{ij} = \phi(x_i)^T \phi(x_j)$$

$$\int_{i}^{t} data point$$

$$\int_{i}^{t} data point$$

Examples of Kernel Matrix

Discussion

• For example, if $\phi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$, then the kernel matrix can be simplified.

$$K_{ij} = \left(x_i^T x_j\right)^2$$

• Another example is the quadratic kernel $K_{ij} = (x_i^T x_j + 1)^2$. It can be factored to have the following feature representations.

$$\phi(x) = \left(x_1^2, x_2^2, \sqrt{2}x_1x_2, x_1, x_2, 1\right)$$

Kernel Matrix Characterization

Discussion

 A matrix K is kernel (Gram) matrix if and only if it is symmetric positive semidefinite.

Popular Kernels

Discussion

- Other popular kernels include the following.
- **1** Linear kernel: $K_{ij} = x_i^T x_j$ SVM
- 2 Polynomial kernel: $K_{ij} = (x_i^T x_j + 1)^d$
- Radial Basis Function (Gaussian) kernel:

$$K_{ij} \neq \exp\left(-\frac{1}{\sigma^2}(x_i - x_j)^T(x_i - x_j)\right) \leftarrow$$

 Gaussian kernel has infinite dimensional feature representations. There are dual optimization techniques to find w and b for these kernels.

Kernel Trick for XOR

Quiz (Graded)

- March 2018 Final Q17
- SVM with quadratic kernel $\phi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$ can correctly classify the training set for XOR.

- B: False.
- C: Do not choose this.
- D: Do not choose this.
- E: Do not choose this.

Kernel Matrix

Quiz (Graded)

- Fall 2009 Final Q2
- What is the feature vector $\phi(x)$ induced by the kernel

$$K_{ij} = \exp(x_i + x_j) + \sqrt{x_i x_j} + 3?$$

- A: $(\exp(x), \sqrt{x}, 3)$
- B: $\left(\exp\left(x\right), \sqrt{x}, \sqrt{3}\right)$
- C: $\left(\sqrt{\exp(x)}, \sqrt{x}, 3\right)$
- D: $\left(\sqrt{\exp(x)}, \sqrt{x}, \sqrt{3}\right)$
- E: None of the above

