CS540 Introduction to Artificial Intelligence Lecture 5

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

June 1, 2020

Survey Question

Admin

Socrative room: CS540E student login

- Which prerecorded lecture videos have you watched?
- A: Yes
- B: Lectures 1, 2, 3, 4, 5, 6
- C: Lectures 1, 2, 3, 4
- D: Lectures 1, 2
- E: No

enter 7D

Schedule Admin

- Week 2 Examples and Quiz questions on Week 4
- Week 3 SVM and DTree

Maximum Margin Diagram

Motivation

Constrained Optimization Derivation

Constrained Optimization

Definition

• The goal is to maximize the margin subject to the constraint that the plus plane and the minus plane separates the instances with $y_i = 0$ and $y_i = 1$.

$$\max_{w} \left(\frac{2}{\sqrt{w^T w}} \right) \text{ such that } \left\{ \frac{\left(w^T x_i + b \right) \leqslant -1 \quad \text{if } y_i = 0}{\left(w^T x_i + b \right) \geqslant 1 \quad \text{if } y_i = 1}, i = 1, 2, ..., n \right\}$$

The two constrains can be combined.

$$\max_{w} \frac{2}{\sqrt{w^T w}} \text{ such that } (2y_i - 1) \left(w^T x_i + b \right) \geqslant 1, i = 1, 2, ..., n$$

Hard Margin SVM

Definition

 This is equivalent to the following minimization problem, called hard margin SVM.

$$\min_{w} \frac{1}{2} w^{T} w \text{ such that} \left(2y_{i} - 1 \right) \left(w^{T} x_{i} + b \right) \geqslant 1, i = 1, 2, ..., n$$

Soft Margin Diagram

Definition

Soft Margin SVM

Definition

SVM Weights

- Fall 2005 Final Q15 and Fall 2006 Final Q15
- Find the weights w_1, w_2 for the SVM classifier

$$\mathbb{1}_{\{w_1x_{i1}+w_2x_{i2}+1\}_{0\}}}$$
 given the training data $x_1=\begin{bmatrix}0\\0\end{bmatrix}$ and

$$x_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 with $y_1 = 1$, $y_2 = 0$

- $\sqrt{\bullet}$ A: $w_1 = 0, w_2 = -2$
 - \vee B: $w_1 = -2, w_2 = 0 \checkmark$

C:
$$w_1 = -1, w_2 = -1$$

- D: $w_1 = -2$, $w_2 = -2$
- E: none of the above

SVM Weights Diagram

Quiz

$$W_{1} + 1 = 0$$
 $W_{2} + 1 = 0$
 $1, 0$
 $0, 1$

SVM Weights 2

Quiz

will be on mothern

$$varphi w_1 = -4, w_2 = -3$$

$$\sim$$
 • κ : $w_1 = -3, w_2 = -4$

•
$$w_1 = -4, w_2 = -4$$

$$(\cdot) \bullet \mathbb{R} : w_1 = -8, w_2 = -8$$

SVM Weights 2 Diagram

Soft Margin Quiz

- Fall 2011 Midterm Q8 and Fall 2009 Final Q1
- Let $w = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and b = 3. For the point $x = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$, y = 0, what is the smallest slack variable ξ for it to satisfy the margin

$$(2y_i - 1) \left(w^T x_i + b \right) \ge 1 - \xi_i, \xi_i \ge 0$$

$$-1\left((1,2)\begin{pmatrix}4\\5\end{pmatrix}+3\right)\geq 1-7;$$

$$f_1 \geq 1 + (14 + 3) = 18$$

Soft Margin 2

$$\int_{1}^{\infty} \frac{1}{1-(-1)\left(\frac{1}{1+2}\left(\frac{1}{-2}\right)+3\right)} = \frac{1}{2} = -\frac{1}{2}$$

• Let $w = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and b = 3. For the point $x = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$, y = 0, what is the smallest slack variable ξ for it to satisfy the margin constraint?

Subgradient Descent

- The gradient for the above expression is not defined at points with $1 (2y_i 1)(w^Tx_i + b) = 0$.
- Subgradient can be used instead of gradient.

Subgradient

- The subderivative at a point of a convex function in one dimension is the set of slopes of the lines that are tangent to the function at that point.
- The subgradient is the version for higher dimensions.
- The subgradient $\partial f(x)$ is formally defined as the following set.

$$\partial f\left(x\right) = \left\{v: f\left(x'\right) \geq f\left(x\right) + v^{T}\left(x' - x\right) \ \forall \ x'\right\} \longleftarrow$$

Subgradient 1

• Which ones (multiple) are subderivatives of |x| at x = 0?

A:/-1
B: -0.5
C: 0
D: 0.5

Subgradient 2

Q 4

- Which ones (select one of them) are subderivatives of $\max \{x, 0\}$ at x = 0?
- A: -1
- B: -0.5
- C: 0
- D: 0.5
- E: 1

Subgradient Descent Step

Definition

 One possible set of subgradients with respect to w and b are the following.

$$\partial_{w} C \ni \lambda w - \sum_{i=1}^{n} (2y_{i} - 1) x_{i} \mathbb{1}_{\{(2y_{i} - 1)(w^{T}x_{i} + b) \geqslant 1\}}$$

$$\partial_{b} C \ni - \sum_{i=1}^{n} (2y_{i} - 1)) \mathbb{1}_{\{(2y_{i} - 1)(w^{T}x_{i} + b) \geqslant 1\}}$$

 The gradient descent step is the same as usual, using one of the subgradients in place of the gradient.

PEGASOS Algorithm Algorithm

- Inputs: instances: $\{x_i\}_{i=1}^n$ and $\{z_i = 2y_i 1\}_{i=1}^n$
- Outputs: weights: $\{w_j\}_{j=1}^m$
- Initialize the weights.

$$w_j \sim \text{Unif } [0,1]$$

 Randomly permute (shuffle) the training set and performance subgradient descent for each instance i.

$$w = (1 - \lambda) w - \alpha z_i \mathbb{1}_{\{z_i w^T x_i \ge 1\}} x_i$$

Repeat for a fixed number of iterations.

Kernel Trick 1D Diagram

Motivation

SVM

Kernelized SVM

Definition

- With a feature map φ , the SVM can be trained on new data points $\{(\varphi(x_1), y_1), (\varphi(x_2), y_2), ..., (\varphi(x_n), y_n)\}.$
- The weights w correspond to the new features $\varphi(x_i)$.
- Therefore, test instances are transformed to have the same new features.

$$\hat{y}_i \neq \mathbb{1}_{\{w^T \varphi(x_i) \geq 0\}}$$

Kernel Matrix

Definition

The feature map is usually represented by a n × n matrix K
called the Gram matrix (or kernel matrix).

Examples of Kernel Matrix

Definition

• For example, if $\varphi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$, then the kernel matrix can be simplified.

$$K_{ii'} = \left(x_i^T x_{i'}\right)^2$$

• Another example is the quadratic kernel $K_{ii'} = (x_i^T x_{i'} + 1)^2$. It can be factored to have the following feature representations.

ntations. (a)
$$\varphi(x) = (x_1^2, x_2^2, \sqrt{2}x_1 x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1)$$

that poly

Examples of Kernel Matrix Derivation

Definition
$$\begin{bmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1 & X_1
\end{bmatrix} = \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1 & X_1
\end{bmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1 & X_1
\end{bmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1
\end{pmatrix} + \begin{pmatrix}
X_1 & X_1 & X_1 \\
X_1 & X_1$$

Popular Kernels

Discussion

- Other popular kernels include the following.
- ① Linear kernel: $K_{ii'} = x_i^T x_{i'}$
- ② Polynomial kernel: $K_{ii'} = (x_i^T x_{i'} + 1)^d$
- Radial Basis Function (Gaussian) kernel:

$$K_{ii'} = \exp\left(-\frac{1}{\sigma^2} \left(x_i - x_{i'}\right)^T \left(x_i - x_{i'}\right)\right)$$

 Gaussian kernel has infinite dimensional feature representations. There are dual optimization techniques to find w and b for these kernels.

Kernel Trick for XOR

Quiz

3

March 2018 Final Q17

• SVM with quadratic kernel $\varphi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$ can correctly classify the training set for $y = x_1$ XOR x_2 .

A: True.

B: False.

Kernel Trick for XOR 2

Q5

• SVM with quadratic kernel $\varphi(x) = (x_1^2, \sqrt{2x_1x_2}, x_2^2)$ can correctly classify the training set for $y = x_1$ NAND x_2 . NAND is just "not and".

- A: True.
- B: False.

Kernel Matrix

- Fall 2009 Final Q2
- What is the feature vector $\varphi(x)$ induced by the kernel

$$K_{ii'} = \exp(x_i + x_{i'}) + \sqrt{x_i x_{i'}} + 3?$$

- A: $(\exp(x), \sqrt{x}, 3)$
- B: $\left(\exp\left(x\right), \sqrt{x}, \sqrt{3}\right)$
- C: $\left(\sqrt{\exp(x)}, \sqrt{x}, 3\right)$
- D: $\left(\sqrt{\exp\left(x\right)}, \sqrt{x}, \sqrt{3}\right)$
- E: None of the above

Kernel Matrix Math

Kernel Matrix 2

Quiz

Back at 7:30

• What is the feature vector $\varphi(x)$ induced by the kernel

$$K_{ii'} = 4 \exp(x_i + x_{i'}) + 2x_i x_{i'}?$$

- A: $(4 \exp(x), 2\sqrt{x})$
- B: $(2 \exp(x), \sqrt{2}\sqrt{x})$
- C: (4 exp (x), 2x)
- D) $(2 \exp(x), \sqrt{2}x)$
 - E: None of the above

Kernel Matrix Math 2 Quiz

Hat Game

Quiz (Participation)

- 5 kids are wearing either green or red hats in a party: they can see every other kid's hat but not their own.
 - Dad said to everyone: at least one of you is wearing green hat.
 - Dad asked everyone: do you know the color of your hat?
 - Everyone said no.
 - Dad asked again: do you know the color of your hat?
 - Everyone said no.
 - Dad asked again: do you know the color of your hat?
 - Some kids (at least one) said yes.
 - No one lied. How many kids are wearing green hats?
 - A: 1... B: 2... C: 3... D: 4... E: 5

Hat Game Diagram

Discussion