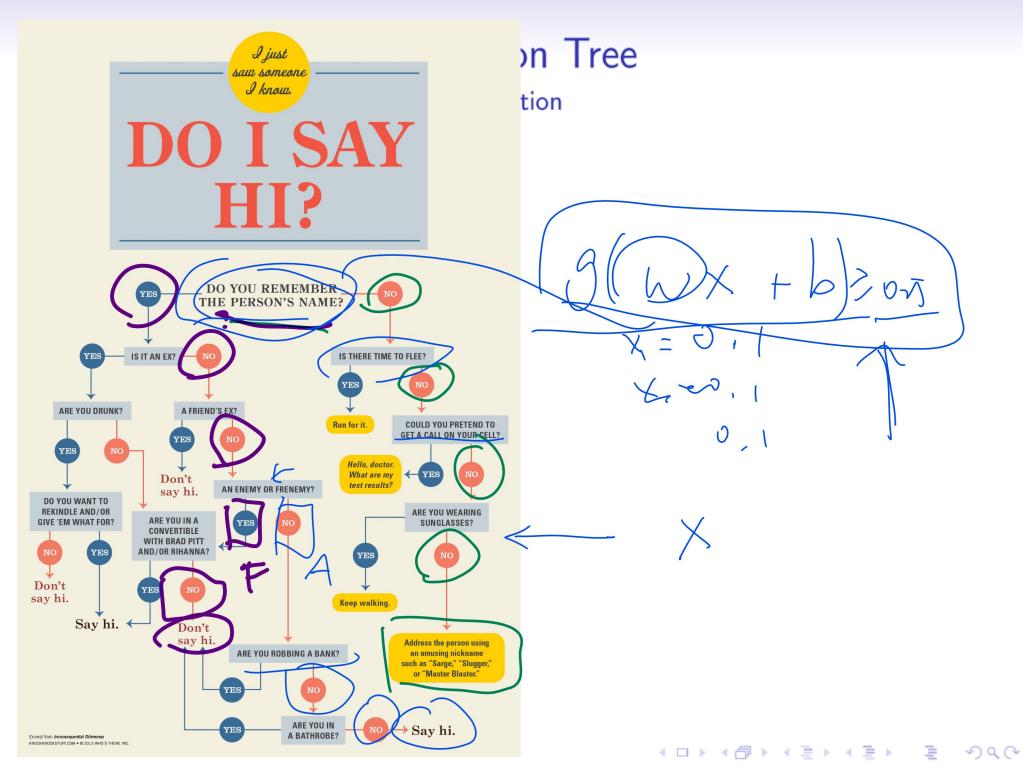
CS540 Introduction to Artificial Intelligence Lecture 6

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

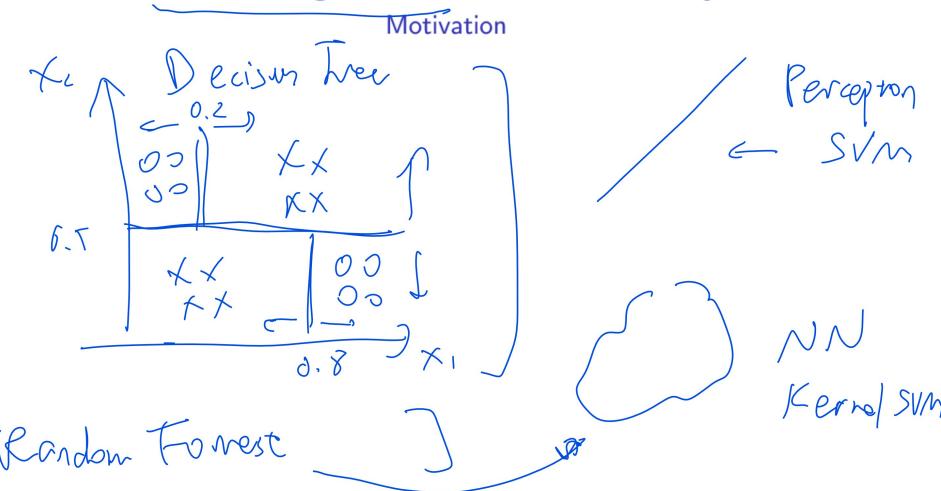
Dyer

May 26, 2020

•0000000000000000



Axes Aligned Decision Boundary



Decision Tree

Description

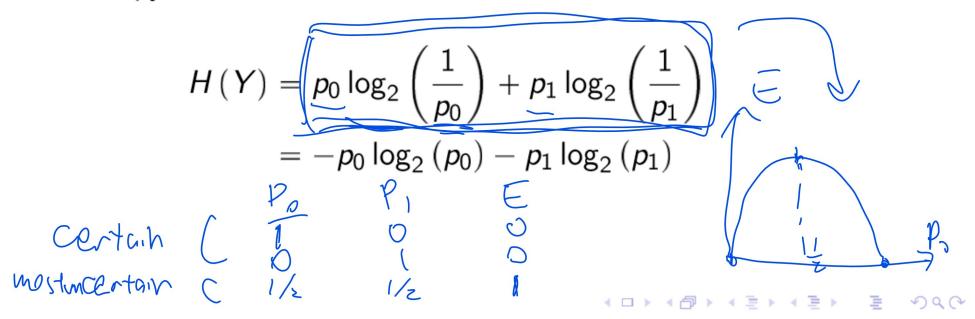
- Find the feature that is the most informative.
- Split the training set into subsets according to this feature.
- Repeat on the subsets until all the labels in the subset are the same.

Binary Entropy

Definition

4

- Entropy is the measure of uncertainty.
- The value of something uncertain is more informative than the value of something certain.
- For binary labels, $y_i \in \{0,1\}$, suppose p_0 fraction of labels are 0 and $1-p_0=p_1$ fraction of the training set labels are 1, the entropy is:



Measure of Uncertainty

Definition

- If $p_0 = 0$ and $p_1 = 1$, the entropy is 0, the outcome is certain, so there is no uncertainty.
- If $p_0 = 1$ and $p_1 = 0$, the entropy is 0, the outcome is also certain, so there is no uncertainty.
- If $p_0 = \frac{1}{2}$ and $p_1 = \frac{1}{2}$, the entropy is the maximum 1, the outcome is the most uncertain.

Entropy

Definition

• If there are K classes and p_y fraction of the training set labels are in class y, with $y \in \{1, 2, ..., K\}$, the entropy is:

$$H(Y) = \sum_{y=1}^{K} p_y \log_2 \left(\frac{1}{p_y}\right)$$
$$= -\sum_{y=1}^{K} p_y \log_2 (p_y)$$

Conditional Entropy

Definition

• Conditional entropy is the entropy of the conditional distribution. Let K_X be the possible values of a feature X and K_Y be the possible labels Y. Define p_X as the fraction of the instances that is x, and $p_{y|X}$ as the fraction of the labels that are y among the ones with instance x.

$$H(Y|X = x) = -\sum_{y=1}^{K_Y} p_{y|x} \log_2(p_{y|x})$$

$$H(Y|X) = \sum_{x=1}^{K_X} p_x H(Y|X = x)$$

Aside: Cross Entropy

Definition

 Cross entropy measures the difference between two distributions.

$$H(Y,X) = -\sum_{z=1}^{K} p_{Y=z} \log_2 \left(p_{X=z} \right)$$

• It is used in logistic regression to measure the difference between actual label Y_i and the predicted label A_i for instance i, and at the same time, to make the cost convex.

$$(Y_i, A_i) = -y_i \log(a_i) - (1 - y_i) \log(1 - a_i)$$

Uncertainth

Information Gain

Definition

 The information gain is defined as the difference between the entropy and the conditional entropy.

$$I(Y|X) = H(Y) - H(Y|X).$$

 The larger than information gain, the larger the reduction in uncertainty, and the better predictor the feature is.

Splitting Discrete Features Definition

 The most informative feature is the one with the largest information gain.

$$\underset{j}{\operatorname{arg max}} I(Y|X_j)$$

• Splitting means dividing the training set into K_{X_j} subsets.

$$\{(x_i, y_i) : x_{ij} = 1\}, \{(x_i, y_i) : x_{ij} = 2\}, ..., \{(x_i, y_i) : x_{ij} = K_{X_j}\}$$

Splitting Continuous Features

Definition

- Continuous features can be (arbitrarily) uniformly split into K_X categories.
- To construct binary splits, all possible splits of the continuous feature can be constructed, and the one that yields the highest information gain is used.

$$\mathbb{1}_{\{X_j \leq x_{1j}\}}, \mathbb{1}_{\{X_j \leq x_{2j}\}}, ..., \mathbb{1}_{\{X_j \leq x_{nj}\}}$$

 One of the above binary features is used in place of the original continuous feature X_i.

Choice of Thresholds

Definition

- In practice, the efficient way to create the binary splits uses the midpoint between instances of different classes.
- The instances in the training set are sorted by X_j , say $x_{(1)j}, x_{(2)j}, ..., x_{(n)j}$, and suppose $x_{(i)j}$ and $x_{(i+1)j}$ have different labels, then $\frac{1}{2} \left(x_{(i)j} + x_{(i+1)j} \right)$ is considered as a possible binary split.

$$\mathbb{I}\left\{x_{j} \leqslant \frac{1}{2}\left(x_{(i)j} + x_{(i+1)j}\right)\right\}$$

Splitting Continuous Variables Diagram Definition

ID3 Algorithm (Iterative Dichotomiser 3), Part I

- Input: instances: $\{x_i\}_{i=1}^n$ and $\{y_i\}_{i=1}^n$, feature j is split into K_j categories and y has K categories
- Output: a decision tree
- Start with the complete set of instances $\{x_i\}_{i=1}^n$.
- Suppose the current subset of instances is $\{x_i\}_{i \in S}$, find the information gain from each feature.

$$I(Y|X_i) = H(Y) - H(Y|X_i)$$

ID3 Algorithm (Iterative Dichotomiser 3), Part II Algorithm

$$H(Y) = -\sum_{y=1}^{K} \frac{\#(Y=y)}{\#(Y)} \log \left(\frac{\#(Y=y)}{\#(Y)} \right)$$

$$H(Y|X_{j}) = -\sum_{x=1}^{K_{j}} \sum_{y=1}^{K} \frac{\#(Y=y, X_{j}=x)}{\#(Y)} \log \left(\frac{\#(Y=y, X_{j}=x)}{\#(X_{j}=x)} \right)$$

• Find the more informative feature j^* .

$$j^* = \arg\max_{j} I(Y|X_j)$$

ID3 Algorithm (Iterative Dichotomiser 3), Part III Algorithm

Split the subset S into K_{i*} subsets.

$$S_1 = \{(x_i, y_i) \in S : x_{ij^*} = 1\}$$

$$S_2 = \{(x_i, y_i) \in S : x_{ij^*} = 2\}$$

$$S_{K_{X_{j^*}}} = \{(x_i, y_i) \in S : x_{ij^*} = K_{X_{j^*}}\}$$

• Recurse over the subsets until $p_y = 1$ for some y on the subset.

Pruning Diagram

Disucssion

Pruning Discussion

- Use the validation set to prune subtrees by making them a leaf. The leaf created by pruning a subtree has label equal to the majority of the training examples reaching this subtree.
- If making a subtree a leaf does not descrease the accuracy on the validation set, then the subtree is pruned.
- This is one of the simplest ways to prune a decision tree, called Reduced Error Pruning.

Bagging

- Create many smaller training sets by sampling with replacement from the complete training set.
- Train different decision trees using the smaller training sets.
- Predict the label of new instances by majority vote from the decision trees.
- This is called bootstrap aggregating (bagging).

Random Forrest

Discussion

- When training the decision trees on the smaller training sets, only a random subset of the features are used. The decision trees are created without pruning.
- This algorithm is called random forests.

Boosting Discussion

- The idea of boosting is to combine many weak decision trees, for example, decision stumps, into a strong one.
- Decision trees are trained sequentially. The instances that are classified incorrectly by previous trees are made more important for the next tree.

Adaptive Boosting, Part I

Discussion

The weights w for the instances are initialized uniformly.

$$w = \left(\frac{1}{n}, \frac{1}{n}, ..., \frac{1}{n}\right)$$

 In each iteration, a decision tree f_k is trained on the training instances weighted by w.

$$f_k = \arg\min_{f} \sum_{i=1}^n w_i \mathbb{1}_{\{f(x_i) \neq y_i\}}$$

$$\varepsilon_k = \min_{f} \sum_{i=1}^n w_i \mathbb{1}_{\{f_k(x_i) \neq y_i\}}$$

Adaptive Boosting, Part II Discussion

• The weights for the tree f_k is computed.

$$\alpha_k = \log\left(\frac{1 - \varepsilon_k}{\varepsilon_k}\right)$$

• The weights are updated according to the error ε made by f_k , and normalized so that the sum is 1.

$$w_i = w_i e^{-\alpha_k \left(2 \cdot \mathbb{I}_{\{f_k(x_i) = y_i\}} - 1\right)}$$

Adaptive Boosting, Part II

Discussion

- The label of a new test instance x_i is the α weighted majority of the labels produced by all K trees: $f_1(x_i), f_2(x_i), ..., f_K(x_i)$.
- For example, if there are only two classes $\{0,1\}$, and α is normalized so that the sum is 1, then the prediction is the following.

$$\hat{y}_{i} = 1 \left\{ \sum_{k=1}^{K} \alpha_{k} f_{k} \left(x_{i} \right) \geq 0.5 \right\}$$

K Nearest Neighbor

Description

- Given a new instance, find the K instances in the training set that are the closest.
- Predict the label of the new instance by the majority of the labels of the K instances.

Distance Function

Definition

 Many distance functions can be used in place of the Euclidean distance.

$$\rho(x, x') = ||x - x'||_2 = \sqrt{\sum_{j=1}^{m} (x_j - x_j')^2}$$

An example is Manhattan distance.

$$\rho\left(x,x'\right) = \sum_{j=1}^{m} \left| x_j - x_j' \right|$$

Manhattan Distance Diagram

Definition

P Norms

Definition

Another group of examples is the p norms.

$$\rho\left(x,x'\right) = \left(\sum_{j=1}^{m} \left|x_{j} - x'_{j}\right|^{p}\right)^{\frac{1}{p}}$$

- p = 1 is the Manhattan distance.
- p = 2 is the Euclidean distance.
- $p = \infty$ is the sup distance, $\rho(x, x') = \max_{i=1,2,...,m} \{ |x_i x_j'| \}$.
- p cannot be less than 1.

K Nearest Neighbor

Algorithm

- Input: instances: $\{x_i\}_{i=1}^n$ and $\{y_i\}_{i=1}^n$, and a new instance \hat{x} .
- Output: new label ŷ.
- Order the training instances according to the distance to \hat{x} .

$$\rho\left(\hat{x}, x_{(i)}\right) \le \rho\left(\hat{x}, x_{(i+1)}\right), i = 1, 2, ..., n-1$$

Assign the majority label of the closest k instances.

$$\hat{y} = \text{mode } \{y_{(1)}, y_{(2)}, ..., y_{(k)}\}$$