Decision Tre Random Forrest Nearest Neighbor

Q000000000000 00000 Q00000 Q0000

CS540 Introduction to Artificial Intelligence
Lecture 6

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles
Dyer

May 26, 2020



Decision Tree Random Forrest Nearest Neighbor
900000000000 000000 000000 00000

L jut n lree

tion

A FRIEND'S EX?

Run for it. COULD YOU PRETEND TO
G YOURGELL?
Hello, doctor.
Don’t é What are my
say hi.  ANENEMY OR FRENEMY? LeEleElis
DO YOU WANT TO

REKINDLE AND/OR ARE YOU WEARING

GIVE 'EM WHAT FOR? ARE YOUIN A SUNGLASSES?

CONVERTIBLE

WITH BRAD PITT <
AND/OR RIHANNA?

?‘ IS IT AN EX?

ARE YOU DRUNK?

Don’t

say hi. Keep walking.

Say hi.

Lan

A4

v

Address the person using
ARE YOU ROBBING A BANK?

an amusing nickname
such as “Sarge,” “Slugger,”
or “Master Blaster.”

ARE YOU IN S
s Dot A BATHROBE? a7 Ll
KNOCKKNOCKSTUFF.COM = © 2013 WHO'S THERE INC.



Decision Tree Random Forrest Nearest Neighbor
0800000000000 00000 000000 00000

Axes Aligned Decision Boundary

—Motivation
& @Oi_c)\;m hree (W@rmq
02 e— SV
4 f
f~x T
| M 05

o C—a,X Jf'\/ /\)/\)

Ker m/ iy



Decision Tree
0000000000000 00000 000000 00000

Decision Tree

Description

e Find the feature that is the mosﬁformative.
e Split the training set into subsets according to this feature.
SAUITIE. S6L

@ Repeat on the subsets until all the labels in the subset are the

m—— e
Same.
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Binary Entropy

Definition

1 §

e Entropy is the measure of uncertainty. 7%
@ The value of something uncertain is more informative than the
value of something certain.

@ For binary labels, y; € iOz 1}, suppose pg fraction of labels are
0 and 1 — pg = p1 fraction of the traﬁn_é set labels are 1, the

entropy Is:

COrtuh
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Measure of Uncertainty

Definition

e If pp =0 and p; = 1, the entropy is 0, the outcome is certain,
so there is no uncertainty.

e If pp =1 and p; = 0, the entropy is 0, the outcome is also

certain, so there is no uncertainty.

il 1
e If pp = = and p; = =, the entropy is the maximum 1, the

2 2
outcome i1s the most uncertain.
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Entropy
Definition

o If there are K classes and p, fraction of the training set labels
are in class y, with y € {1, 2, ..., K}, the entropy is:
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Conditional Entropy

Definition

e Conditional entropy is the entropy of the conditional
distribution. Let Kx be the possible values of a feature X and
Ky be the possible labels Y. Define p, as the fraction of the
instances that is x, and p,|, as the fraction of the labels that
are y among the one%\\/vith instance x.
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Aside: Cross Entropy

Definition

@ Cross entropy measures the difference between two

distributions.

H(Y.X) = ZZ'ng (px-)

@ It is used in logistic regression to measure the difference
between actual label Y; and the predicted label A; for instance
—ahd at the same time, to make the cost convex. d
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Information Gain

Definition

@ The information gain is defined as the difference between the
entropy and the conditional entropy.

1(Y|X) = H(Y) = H(Y|X).

e The larger than information gain, the larger the reduction in
uncertainty, and the better predictor the feature is.
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Splitting Discrete Features

Definition

@ The most informative feature is the one with the largest
information gain.

arg max / (Y|X;)
J

e Splitting means dividing the training set into Kx. subsets.

{(xi,yi) : A = 1}, {(xi, yi) : A = ) {(Xﬁ'?y.") - Rjj = KXJ}
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Splitting Continuous Features

Definition

e Continuous features can be (arbitrarily) uniformly split into
Kx categories.

@ To construct binary splits, all possible splits of the continuous
feature can be constructed, and the one that yields the
highest information gain is used.

1

ﬂ{XjﬂXu}’ H{X EEXQ_,} Xjéx”j}

@ One of the above binary features is used in place of the
original continuous feature X;.
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Choice of Thresholds

Definition

@ In practice, the efficient way to create the binary splits uses
the midpoint between instances of different classes.

@ The instances in the training set are sorted by Xj, say
X(1)j> X(2)j» -+» X(m)j» @nd suppose x(;y; and x(;;1); have different
labels, then > (X(iyj + X(i+1)j) is considered as a possible
binary split.
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Splitting Continuous Variables Diagram

Definition
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ID3 Algorithm (lterative Dichotomiser 3), Part |
Algorithm

o Input: instances: {x;}\_; and {y;}"_;, feature j is split into K;
categories and y has K categories

e Output: a decision tree

e Start with the complete set of instances {x;}_;.

@ Suppose the current subset of instances is {x;}..s, find the
information gain from each feature.

HY[X;) = H(Y) = H(Y[X)
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ID3 Algorithm (lterative Dichotomiser 3), Part Il
Algorithm

ZH) £ (V)
KJ- K

#(Y =y, X = x (Y =y, X = x

HOYX) == 2, 2, ( 70 )'°g( (#<Xf=x> ))
w=l =

@ Find the more informative feature j*.

j* =argmax/ (Y|X;)
J
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ID3 Algorithm (lterative Dichotomiser 3), Part Il
Algorithm

e Split the subset S into K subsets.

@ Recurse over the subsets until p, = 1 for some y on the
subset.
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Pruning Diagram

Disucssion
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Pruning

Discussion

@ Use the validation set to prune subtrees by making them a
leaf. The leaf created by pruning a subtree has label equal to
the majority of the training examples reaching this subtree.

e If making a subtree a leaf does not descrease the accuracy on
the validation set, then the subtree is pruned.

@ This is one of the simplest ways to prune a decision tree,
called Reduced Error Pruning.

¥+ Meichbhar
NEIENDO



Decision Tree Random Forrest Nearest Neighbor
e SC0000

Bagging

Discussion

e Create many smaller training sets by sampling with
replacement from the complete training set.

e Train different decision trees using the smaller training sets.

@ Predict the label of new instances by majority vote from the
decision trees.

e This is called bootstrap aggregating (bagging).
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Random Forrest

Discussion

@ When training the decision trees on the smaller training sets,
only a random subset of the features are used. The decision
trees are created without pruning.

e This algorithm is called random forests.
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Boosting

Discussion

@ The idea of boosting is to combine many weak decision trees,
for example, decision stumps, into a strong one.

@ Decision trees are trained sequentially. The instances that are

classified incorrectly by previous trees are made more
important for the next tree.
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Adaptive Boosting, Part |

Discussion

@ The weights w for the instances are initialized uniformly.

@ In each iteration, a decision tree f, is trained on the training
instances weighted by w.

n
fi = arg min Z; Wi Lr(x)2yi}
=

n
" Z; Will (f(x) #vi)
| =

(M
x-
|
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Adaptive Boosting, Part |

Discussion

@ The weights for the tree f; is computed.

1 — ey
(kk=|0g( - )

@ The weights are updated according to the error ¢ made by fy,
and normalized so that the sum is 1.

— 2-1 —1
wi = wie” (2 iy~
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Adaptive Boosting, Part |

Discussion

@ The label of a new test instance x; is the o weighted majority
of the labels produced by all K trees:

h (%), (), ... fx (X).

e For example, if there are only two classes {0, 1}, and « is
normalized so that the sum is 1, then the prediction is the
following.

yvi=1, gk
Z Ofkfk (X,') = 0.5
k=1
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K Nearest Neighbor

Description

e Given a new instance, find the K instances in the training set
that are the closest.

@ Predict the label of the new instance by the majority of the
labels of the K instances.
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Distance Function

Definition

@ Many distance functions can be used in place of the Euclidean
distance.

(x5 — x)
1

m
J:

p (%, X!) = HX - Xsz = \

@ An example is Manhattan distance.

m

p(xx) =) |x—x]

j=1
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Manhattan Distance Diagram

Definition
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P Norms

Definition

@ Another group of examples is the p norms.

1

& p
p(x,x') = { 25 1% = x|°
=1

e p =1 is the Manhattan distance.
@ p =2 s the Euclidean distance.

@ p =  is the sup distance, p(x,x’) = g m{|XJ - ;|}

@ p cannot be less than 1.
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K Nearest Neighbor

Algorithm

o Input: instances: {x;};_; and {y;}:_;, and a new instance X.

e Output: new label y.

@ Order the training instances according to the distance to X.

P ()?,x(,-)) <p ()?, X(f+1)) J=12,...n—1

@ Assign the majority label of the closest k instances.

5}: mode {y(l)ay@)ay(k)}





