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Hat Game
OOVMM/M Lvn,@ Quiz (Participation) CD/\\[JQM(

}ﬂ&f}"'\ﬂﬂ%/‘
e 5 kids are wearing elther green or red hats in a p{y/ they can

see every other kid’'s hat but not their own.

e Dad said to everyone: at least one of you is wearing green hat.

e Dad asked everyone: af[you know the color of your hat?
e Everyone said no.
@ Dad asked again: do you know the color of your hat?
"~z e Everyone said no.

e Dad asked again: do you know the color of your hat?

@ Some kids (at least one) said yes.

Yﬁo No one lied. How many kids are wearing green hats?

e A:1... B: 2...§C: 3..) D:4... E: 5
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Hat Game Diagram

Discussion
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Decision Tree

Coloe
Description LQV \9:{.;,
0 A

e Find the feature that is the@ informatiD
e Split the training set into subsetsaccording to this feature.

@ Repeat on the subsets until all the labels in the subset are the
same.
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Binary Entropy

Definition
onposte ok hnfb.
yd ( g
£
e Entropy is the measure of uncertainty.

e For binary labels, y; € {0, 1}, suppose pg fraction of labels are
0 and 1 — pg = p; fraction of the training set labels are 1, the

entropy Is: P
/4

! SR L
H(Y) = po log; <—) + p1 log; (—)
\ C a'—)po pl‘)

= —po log, (po) — p1log, (p1)
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Measure of Uncertainty

Definition

@ If pp =0 and p; = 1, the entropy is 0, the outcome is certain,
so there is no uncertainty.

e If pp =1 and p; = 0, the entropy is 0, the outcome is also
certain, so there is no uncertainty.

1 1
e If pp = > and p; = > the entropy is the maximum 1, the
outcome is the most uncertain. A
0 B
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Entropy

Definition

e If there are K classes and p, fraction of the training set labels
are in class y, with y € {1,2,..., K}, the entropy is:

H(Y)
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Conditional Entropy

Definition

e Conditional entropy is the entropy of the conditional
distribution. Let Kx be the possible values of a feature X and
Ky be the possible labels Y. Define p, as the fraction of the

Instances that is x, ans the fraction of the labels that
\ 4 —
are y among the ones with instance x.

: Ky Po/s\
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Aside: Cross Entropy

Definition

e Cross entropy measures the difference between two
distributions.

H(YX ZPY legZ(pX z)

=] E

@ It is used in logistic regression to measure the difference
between actual label Y; and the predicted label A; for instance

i, and at the same time, to make the cost convex.
—

H(Yi, Ai) = —yilog(ai) — (1 — y;)log (1 — aj)
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Information Gain

Definition

@ The information gain is defined as the difference between the
entropy and the conditional entropy.

I(YIX) = H(Y) = H(Y|X).

W\Ce»tcn-\rf) of T \’V"\ce»fw«y oAd ¥

@ The larger than information gain, the larger the reduction in ]
uncertainty, and the better predictor the feature is. X Vel

\§ J(u,\
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Splitting Discrete Variables

Definition

@ The most informative feature is the one with the largest
information gain. \X a,\

arg max / (Y]X) /\T\i Q\/@

e Splitting means dividing the training set into Ky subsets.

{6, yi) x5 = 1} (%, y0) = x5 = 2}, -, { (%6, i) = xij = Kix )



Decision Tree Random Forrest Nearest Neighbor
iolelelealelelelalalole] lelolelelelalnle] C0000 Q000000

Splitting Continuous Variables

Definition

@ Continuous variables can be uniformly split into Kx categories.

e In practice, all possible binary splits of the continuous
variables are constructed, and the one that yields the highest
information gain is used.

{xj}xlj}? ]l{}c_”.;}XQj}’ Tt H{Xj}}(nj}

@ One of the above binary features is used in place of the
original continuous variable Xx;.
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Splitting Continuous Variables Diagram

Definition
X, =1 2 3 4 <
Y\ —— el
o 61 o#% \
;ﬂ @mﬁc@ \a—%u P - e + X,
—— ‘

Nearest Neighbor
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ID3 Algorithm (lterative Dichotomiser 3), Part |
Algorithm

o Input: instances: {x;}\_; and {y;}"_;, feature j is split into K;
categories and y has K categories

e Output: a decision tree

e Start with the complete set of instances {x;}/_;.

@ Suppose the current subset of instances is {x;}..s, find the
information gain from each feature.

HY[X;) = H(Y) = H(Y[X)
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ID3 Algorithm (lterative Dichotomiser 3), Part Il
Algorithm

ZH) £ (V)
KJ- K

#(Y =y, X = x (Y =y, X = x

HOYX) == 2, 2, ( 70 )'°g( (#<Xf=x> ))
w=l =

@ Find the more informative feature j*.

j* =argmax/ (Y|X;)
J
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ID3 Algorithm (lterative Dichotomiser 3), Part Il
Algorithm

e Split the subset S into K+ subsets.

@ Recurse over the subsets until p, = 1 for some y on the
subset. ——

fto?
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Pruning

Discussion \

C\H A/\S‘ngag\q '/\o\yt -blE‘SCNe I“Lﬁ)

e Use the validation set to prune suBtrees by making them a
leaf. The leaf has label equal to the majority of the train
examples reaching this subtree.
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o I e
\60}0 = bloya @Entropy "?S P lﬁ? éf

9,8 =5

e A: 0.75

g, 4= 2
@ Running from You-Know-Who, Harry enters thaézCS building

Quiz (Graded) [5;% _ )\OJ L%

Fall 2010 Final Q10 7

"% el
on t@ st floor. He flips a fair coin: if it is heads he hides in

room 1325: otherwise, he climbs to the 2nd floor~In that case

he flips the coin again: if it is heads he hides in CSL; -
otherwise, he climbs to the 3rd floor and hides in 333I. What
Is the entropy of Harry's location? ,

e B: 1 ~ lo i = o —p lo
fors  HO L AL/ A A T8

o D: 1.75 | =

= L ayyy
e E: None of the above. g L ﬂ? O
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Decision Tree, Table X,

X,

,, Quiz (Graded) o N
,0/\X A
\jv

%
:
3

J=° gtl
° Recall the? llowing logical tor \ OR, IMPLIES,

F). A cC) D

X1 | X2 | X1 AN X2 lev X2 )Tg X2 | X1 <= X2
1 | 1. 1 1 1 1
1,0 0 1 0 1
0|1 0 1 1 0
00 0 0 (L1 ) 1
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Decision Tree
Quiz (Graded)

e Fall 2009 Midterm Q2
@ Which expression is represented by the decision tree:

y=T
X1< 4
F

e A: x; A xo (AND)

e B: x; v x2 (OR)

e C: xy = xo (IMPLIES)
o D: xy « xp (IF)

ey
II

=
II

@ E: None of the above.
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Bagging

Discussion

S

S L

e Create y|smaller training sets by sampling with
replacemeént from the complete training set.

e Train different decision trees using the smaller training sets.

e Predict the label of new instances by majority vote from the
decision trees.

e This is called bootstrap aggregating (bagging).
D T

%3 S I

r—
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Random Forrest

j ' 2
Discussion

@ When training the decision trees on the SW
only a random subset of the features are used. The decision

trees are created without pruning.

@ This algorithm is called random forests.
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Boosting

Discussion

@ The idea of boosting is to combine many weak decision trees,
for exampt€, decision stumps?into a strong one.
@ Decision trees are trained sequentially. The instances that are

classified incorrectly by previous trees are made more

important for the next tree.
f——
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Adaptive Boosting, Part |

Discussion

@ The weights w for the instances are initialized uniformly.

@ In each iteration, a decision tree f, is trained on the training
instances weighted by w.

e The weights are updated according to the error made by fy.

E

Wi = Wit Lif(i)=y)

n
e = > Wil{s(a)iy)
=1
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Adaptive Boosting, Part |l

Discussion

@ The weights are then normalized (to have sum = 1) and the
weights for the trees z; are updated.

l—¢

@ The label of a new test instance x; is the z weighted majority
of the labels produced by all K trees:

fl (X,') ) f2 (X,') g seey fK (X,'). a .
& AcoX
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K Nearest Neighbor

Description

e Given a new instance, find the K instances in the training set

that are the closest.
—

@ Predict the label of the new instance by the majority of the
labels of the K instances.
“3

7 i
5 O
(7_ L7 %/\j/\/
A f K
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Distance Function

Definition

e Many distance functions can be used in place of the Euclidean
distance.

(x5 — x))°

1

p(x.x') =[x =], =

\5

@ An example is Manhattan distance.
L - horp

m
pod) =Sy o
j=1
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Manhattan Distance Diagram

Definition

X
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P Norms
Definition
@ Another group of examples is the p norms.
1
e p
/ /P
px.x) = | 21 —xj
=1
@ p =1 is the Manhattan distance.
@ p = 2 is the Euclidean distance.
® p =0 is the sup distance, p(x,x') = max {|x; — x{|}.

@ p cannot be less than 1.
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K Nearest Neighbor

Algorithm

o Input: instances: {x;};_; and {y;}'_;, and a new instance X.

e Output: new label y.

e Order the training instances according to the distance to X.

P ()?ax(i)) <P (52q X(i+1)) ’ = 1,2,..,0—1

@ Assign the majority label of the closest k instances.

5} mode {y(l)vy(2)~*y(k)}
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1 Nearest Neighbor
Quiz (Graded)

& Spring 2018 Midterm Q7 e
Ny
Find the L Nearest Neighbor label for [3 using Manhattan

6
distance. ‘7/3—\;\ 4
1( T3

X1 5
x| LN7 |3/ 4\D
1 0

/NN

———

1

y [0 L[
w | ¥, - %, y |

B 1
e C, D, E: Don't choose.
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5 Nearest Neighbor
Quiz (Graded)

e Spring 2018 Midterm Q7
@ Find the 5 Nearest Neighbor label for L3] using Manhattan

—_— 6
distance. 2= 1 N a ‘|O’d“\; d—%é Yo~
X1 i l/ 31512
X2 11713415
B

e B: 1
e C, D, E: Don't choose.





