CS540 Introduction to Artificial Intelligence Lecture 6

Young Wu
Based on lecture slides by Jerry Zhu and Yingyu Liang

June 6, 2019

Hat Game

Common Know edge (Participation)

- 5 kids are wearing either green or red hats in a party: they can see every other kid's hat but and it see every other kid's hat but not their own.
- Dad said to everyone: at least one of you is wearing green hat.
- Dad asked everyone: do you know the color of your hat?
- Everyone said no.
- Dad asked again: do you know the color of your hat?
- Everyone said no.
 - Dad asked again: do you know the color of your hat?
 - Some kids (at least one) said yes.
- No one lied. How many kids are wearing green hats?
 - A: 1... B: 2... C: 3... D: 4... E: 5

Hat Game Diagram

Discussion

Axes Aligned Decision Boundary

Motivation

Decision Tree

Description

- Find the feature that is the (most informative.
- Split the training set into subsets according to this feature.
- Repeat on the subsets until all the labels in the subset are the same.

Binary Entropy

Definition

opposite of Information

- Entropy is the measure of uncertainty.
- For binary labels, $y_i \in \{0, 1\}$, suppose p_0 fraction of labels are 0 and $1 p_0 = p_1$ fraction of the training set labels are 1, the entropy is:

$$H(Y) = p_0 \log_2 \left(\frac{1}{p_0}\right) + p_1 \log_2 \left(\frac{1}{p_1}\right)$$

= $-p_0 \log_2 (p_0) - p_1 \log_2 (p_1)$

Measure of Uncertainty

Definition

- If $p_0 = 0$ and $p_1 = 1$, the entropy is 0, the outcome is certain, so there is no uncertainty.
- If $p_0 = 1$ and $p_1 = 0$, the entropy is 0, the outcome is also certain, so there is no uncertainty.
- If $p_0 = \frac{1}{2}$ and $p_1 = \frac{1}{2}$, the entropy is the maximum 1, the outcome is the most uncertain.

Entropy Definition

• If there are K classes and p_y fraction of the training set labels are in class y, with $y \in \{1, 2, ..., K\}$, the entropy is:

$$H(Y) = \sum_{y=1}^{K} p_y \log_2 \left(\frac{1}{p_y}\right)$$
$$= -\sum_{y=1}^{K} p_y \log_2 (p_y)$$

Conditional Entropy

Definition

 Conditional entropy is the entropy of the conditional distribution. Let K_X be the possible values of a feature X and K_Y be the possible labels Y. Define p_x as the fraction of the instances that is x, and p_{y|x} as the fraction of the labels that are y among the ones with instance x.

$$H(Y|X=x) = -\sum_{y=1}^{K_Y} p_{y|x} \log_2(p_{y|x})$$

$$H(Y|X) = \sum_{x=1}^{K_X} p_x H(Y|X=x)$$

$$frection of instance with
$$frection of instance with
$$frection of instance with$$$$$$

Aside: Cross Entropy Definition

 Cross entropy measures the difference between two distributions.

$$H(Y,X) = -\sum_{z=1}^{K} p_{Y=z} \log_2 \left(\underline{p_{X=z}} \right)$$

 It is used in logistic regression to measure the difference between actual label Y_i and the predicted label A_i for instance i, and at the same time, to make the cost convex.

$$H(Y_i, A_i) = -y_i \log(a_i) - (1 - y_i) \log(1 - a_i)$$

Information Gain

Definition

 The information gain is defined as the difference between the entropy and the conditional entropy.

$$I(Y|X) = H(Y) - H(Y|X).$$
• The larger than information gain, the larger the reduction in

uncertainty, and the better predictor the feature is.

Splitting Discrete Variables

Definition

 The most informative feature is the one with the largest information gain.

$$\underset{j}{\operatorname{arg max}} I(Y|X_j)$$

• Splitting means dividing the training set into K_{X_j} subsets.

$$\{(x_i, y_i) : x_{ij} = 1\}, \{(x_i, y_i) : x_{ij} = 2\}, ..., \{(x_i, y_i) : x_{ij} = K_{X_i}\}$$

Splitting Continuous Variables

Definition

- Continuous variables can be uniformly split into K_X categories.
- In practice, all possible binary splits of the continuous variables are constructed, and the one that yields the highest information gain is used.

$$\mathbb{1}_{\{x_j > x_{1j}\}}, \mathbb{1}_{\{x_j > x_{2j}\}}, ..., \mathbb{1}_{\{x_j > x_{nj}\}}$$

 One of the above binary features is used in place of the original continuous variable x_i.

Splitting Continuous Variables Diagram

Definition

HWS

in practice

ID3 Algorithm (Iterative Dichotomiser 3), Part I

- Input: instances: $\{x_i\}_{i=1}^n$ and $\{y_i\}_{i=1}^n$, feature j is split into K_j categories and y has K categories
- Output: a decision tree
- Start with the complete set of instances $\{x_i\}_{i=1}^n$.
- Suppose the current subset of instances is $\{x_i\}_{i \in S}$, find the information gain from each feature.

$$I(Y|X_i) = H(Y) - H(Y|X_i)$$

ID3 Algorithm (Iterative Dichotomiser 3), Part II Algorithm

$$H(Y) = -\sum_{y=1}^{K} \frac{\#(Y=y)}{\#(Y)} \log \left(\frac{\#(Y=y)}{\#(Y)} \right)$$

$$H(Y|X_{j}) = -\sum_{x=1}^{K_{j}} \sum_{y=1}^{K} \frac{\#(Y=y, X_{j}=x)}{\#(Y)} \log \left(\frac{\#(Y=y, X_{j}=x)}{\#(X_{j}=x)} \right)$$

• Find the more informative feature j^* .

$$j^* = \arg\max_{j} I(Y|X_j)$$

ID3 Algorithm (Iterative Dichotomiser 3), Part III Algorithm

Split the subset S into K_{i*} subsets.

$$S_1 = \{(x_i, y_i) \in S : x_{ij^*} = 1\}$$

 $S_2 = \{(x_i, y_i) \in S : x_{ij^*} = 2\}$

$$S_{K_{X_{j^{\star}}}} = \left\{ (x_i, y_i) \in S : x_{ij^{\star}} = K_{X_{j^{\star}}} \right\}$$

• Recurse over the subsets until $p_y = 1$ for some y on the subset.

 Use the validation set to prune subtrees by making them a leaf. The leaf has label equal to the majority of the train examples reaching this subtree.

Quiz (Graded)

Fall 2010 Final Q10

• Running from You-Know-Who, Harry enters the CS building on the 1st floor. He flips a fair coin: if it is heads he hides in room 1325; otherwise, he climbs to the 2nd floor. In that case he flips the coin again: if it is heads he hides in CSL; otherwise, he climbs to the 3rd floor and hides in 3331. What

is the entropy of Harry's location?

A: 0.75

B: 1

H(Y) = - P, log_P, -P, log_P, -P, log_P3

D: 1.75

E: None of the above.

1 0.5 +0.5

X

Quiz (Graded)

• Recall the following logical operators (AND, OR, IMPLIES,

IF).

<i>x</i> ₁	<i>x</i> ₂	$x_1 \wedge x_2$	$x_1 \vee x_2$	$x_1 \Rightarrow x_2$	$x_1 \leftarrow x_2$
1	1,	1	1	1	1
1	0	0	1	σ	1
0	1	0	1	1	0
0	0	0	0		1

Decision Tree

Quiz (Graded)

- Fall 2009 Midterm Q2
- Which expression is represented by the decision tree:

$$x_1 \begin{cases} T & \hat{y} = T \\ F & x_2 \begin{cases} T & \hat{y} = T \\ F & \hat{y} = F \end{cases}$$

- A: $x_1 \wedge x_2$ (AND)
- B: $x_1 \vee x_2$ (OR)
- C: $x_1 \Rightarrow x_2$ (IMPLIES)
- D: $x_1 \leftarrow x_2$ (IF)
- E: None of the above.

Bagging

Discussion

- Create many smaller training sets by sampling with replacement from the complete training set.
- Train different decision trees using the smaller training sets.
- Predict the label of new instances by majority vote from the decision trees.
- This is called bootstrap aggregating (bagging).

Random Forrest

Discussion

- When training the decision trees on the smaller training sets, only a random subset of the features are used. The decision trees are created without pruning.
- This algorithm is called random forests.

Boosting Discussion

- The idea of boosting is to combine many weak decision trees, for example, decision stumps, into a strong one.
- Decision trees are trained sequentially. The instances that are classified incorrectly by previous trees are made more important for the next tree.

Adaptive Boosting, Part I

Discussion

• The weights w for the instances are initialized uniformly.

$$w = \left(\frac{1}{n}, \frac{1}{n}, ..., \frac{1}{n}\right)$$

- In each iteration, a decision tree f_k is trained on the training instances weighted by w.
- The weights are updated according to the error made by f_{k} .

$$w_{i} = w_{i} \frac{\varepsilon}{1 - \varepsilon} \mathbb{1}_{\{f_{k}(x_{i}) = y_{i}\}}$$

$$\varepsilon = \sum_{i=1}^{n} w_{i} \mathbb{1}_{\{f_{k}(x_{i}) \neq y_{i}\}}$$

Adaptive Boosting, Part II

Discussion

• The weights are then normalized (to have sum = 1) and the weights for the trees z_i are updated.

• The label of a new test instance x_i is the z weighted majority of the labels produced by all K trees:

$$f_1(x_i), f_2(x_i), ..., f_K(x_i).$$

K Nearest Neighbor

Description

- Given a new instance, find the K instances in the training set that are the closest.
- Predict the label of the new instance by the majority of the labels of the K instances.

Distance Function

Definition

 Many distance functions can be used in place of the Euclidean distance.

$$\rho(x, x') = ||x - x'||_2 = \sqrt{\sum_{j=1}^{m} (x_j - x_j')^2}$$

An example is Manhattan distance.

$$\rho\left(x,x'\right) = \sum_{j=1}^{m} \left|x_j - x_j'\right|$$

Manhattan Distance Diagram

P Norms

Definition

Another group of examples is the p norms.

$$\rho\left(x,x'\right) = \left(\sum_{j=1}^{m} \left|x_{j} - x'_{j}\right|^{p}\right)^{\frac{1}{p}}$$

- p = 1 is the Manhattan distance.
- p = 2 is the Euclidean distance.
- $p = \infty$ is the sup distance, $\rho(x, x') = \max_{i=1,2,...,m} \{|x_i x_j'|\}.$
- p cannot be less than 1.

K Nearest Neighbor

Algorithm

- Input: instances: $\{x_i\}_{i=1}^n$ and $\{y_i\}_{i=1}^n$, and a new instance \hat{x} .
- Output: new label ŷ.
- Order the training instances according to the distance to \hat{x} .

$$\rho\left(\hat{x}, x_{(i)}\right) \le \rho\left(\hat{x}, x_{(i+1)}\right), i = 1, 2, ..., n-1$$

Assign the majority label of the closest k instances.

1 Nearest Neighbor

Quiz (Graded)

Spring 2018 Midterm Q7

Find the 1 Nearest Neighbor label for

distance.

Neighbor label for $\begin{bmatrix} 3 \\ 6 \end{bmatrix}$ using Manhattan												
	7	3	3	4	2		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
x_1	1	1	- 3	5	2		> NN					
<i>X</i> ₂	1	7	3	4	5							
У	0	1	1	0	0		/					

|X',-X|+|X,-X,

· C, D, E: Don't choose.

340 => 1

5 Nearest Neighbor

Quiz (Graded)

- Spring 2018 Midterm Q7
- Find the 5 Nearest Neighbor label for $\begin{bmatrix} 3 \\ 6 \end{bmatrix}$

distance. $\chi = n$

• C, D, E: Don't choose.

using Manhattan