CS540 Introduction to Artificial Intelligence Lecture 6

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

June 1, 2020

Hat Game

Quiz (Participation)

- 5 kids are wearing either green or red hats in a party: they can see every other kid's hat but not their own.
- Dad said to everyone: at least one of you is wearing green hat.
- Dad asked everyone: do you know the color of your hat?
- Everyone said no.
- Dad asked again: do you know the color of your hat?
- Everyone said no.
- Dad asked again: do you know the color of your hat?
- Some kids (at least one) said yes.
- No one lied. How many kids are wearing green hats?
- A: 1... B: 2... C: 3... D: 4... E: 5

Hat Game Diagram

Discussion

- Find the feature that is the most informative.
- Split the training set into subsets according to this feature.
- Repeat on the subsets until all the labels in the subset are the same.

Binary Entropy

Definition

inter mente

- Entropy is the measure of uncertainty.
- The value of something uncertain is more informative than the value of something certain.
- For binary labels, $y_i \in \{0, 1\}$, suppose p_0 fraction of labels are 0 and $1 p_0 = p_1$ fraction of the training set labels are 1, the entropy is:

$$H(Y) = p_0 \log_2 \left(\frac{1}{p_0}\right) + p_1 \log_2 \left(\frac{1}{p_1}\right)$$
$$= -p_0 \log_2 (p_0) - p_1 \log_2 (p_1)$$

Entropy

Definition

• If there are K classes and p_y fraction of the training set labels are in class y, with $y \in \{1, 2, ..., K\}$, the entropy is:

$$H(Y) = \sum_{y=1}^{K} p_y \log_2\left(\frac{1}{p_y}\right)$$

$$= -\sum_{y=1}^{K} p_y \log_2(p_y)$$

Conditional Entropy

Definition

 Conditional entropy is the entropy of the conditional distribution. Let K_X be the possible values of a feature X and K_Y be the possible labels Y. Define p_X as the fraction of the instances that is x, and p_{y|x} as the fraction of the labels that are y among the ones with instance x.

$$H(Y|X = x) = -\sum_{y=1}^{K_Y} p_{y|x} \log_2(p_{y|x})$$

$$H(Y|X) = \sum_{x=1}^{K_X} p_x H(Y|X = x)$$

Information Gain

Definition

 The information gain is defined as the difference between the entropy and the conditional entropy.

$$I(Y|X) = H(Y) - H(Y|X).$$

 The larger than information gain, the larger the reduction in uncertainty, and the better predictor the feature is.

Splitting Discrete Features Definition

 The most informative feature is the one with the largest information gain.

$$\operatorname{arg\,max}_{j} I(Y|X_{j})$$

• Splitting means dividing the training set into K_{X_i} subsets.

$$\{(x_i, y_i) : x_{ij} = 1\}, \{(x_i, y_i) : x_{ij} = 2\}, ..., \{(x_i, y_i) : x_{ij} = K_{X_j}\}$$

Entropy Quiz

- Fall 2010 Final Q10
- Running from You-Know-Who, Harry enters the CS building on the 1st floor. He flips a fair coin: if it is heads he hides in room 1325; otherwise, he climbs to the 2nd floor. In that case he flips the coin again: if it is heads he hides in CSL; otherwise, he climbs to the 3rd floor and hides in 3331. What is the entropy of Harry's location?

A: 0.75

B: 1 C: 1.5

D: 1.75

• E: None of the above. $J = \frac{1}{2} \log \frac{1}{2} = \frac{1}{4} \log \frac{1}{4} = \frac{1}{4} \log \frac{1}{4}$

Entropy Math Quiz

Entropy 2

- A bag contains a red ball, a green ball, a blue ball, and a black ball. Randomly draw a ball from the bag with equal probability. What is the entropy of the outcome?
- A: 1
- B: log₂ (3)
- C: 1.5
- D: 2
- E: 4

Pruning Diagram

Baigging and Boosting Diagram Discussion

K Nearest Neighbor

Description

- Given a new instance, find the K instances in the training set that are the closest.
- Predict the label of the new instance by the majority of the labels of the K instances.

Distance Function

Definition

 Many distance functions can be used in place of the Euclidean distance.

$$\rho(x, x') = ||x - x'||_2 = \sqrt{\sum_{j=1}^{m} (x_j - x'_j)^2}$$

An example is Manhattan distance.

$$\rho\left(x,x'\right) = \sum_{j=1}^{m} \left|x_{j} - x_{j}'\right|$$

1 Nearest Neighbor

Spring 2018 Midterm Q7

Find the 1 Nearest Neighbor label for

distance.

 $\binom{3}{6}$ using Manhattan

<i>x</i> ₁	1	1	3	^C 5	2
<i>x</i> ₂	1	7	3	4	5
У	0	1	1	0	0

3 Nearest Neighbor

Quiz

Majoritu

tie Use first example

Cross Validation

 Given the following training data. What is the 2 fold cross? validation accuracy if 1 hearest neighbor classifier with Manhattan distance is used? The first fold is the first five data points. OCC USGCV

train on 1, —

test on 2

train on 2 test on 1 & 2 & X Z

CV -> Calintare accuracy on thanking

Cross Validation Diagram _{Quiz}

Cross Validation 2

$$\begin{cases} X_{11} = 1 & X_{11} = 2 \\ X_{12} = 1 & X_{12} = 3 \end{cases} \qquad X_{1} - X_{1} = 11 - 21 \\ \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 3 \end{pmatrix} & \rightarrow \end{cases} \qquad 711 - 31 \\ = 3$$