CS540 Introduction to Artificial Intelligence Lecture 6

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles
Dyer

June 30, 2021

A Decision Tree

Motivation

Axes Aligned Decision Boundary

Motivation

Decision Tree

Description

- Find the feature that is the most informative.
- Split the training set into subsets according to this feature.
- Repeat on the subsets until all the labels in the subset are the same.

Binary Entropy

Definition

- Entropy is the measure of uncertainty.
- The value of something uncertain is more informative than the value of something certain.
- For binary labels, $y_{i} \in\{0,1\}$, suppose p_{0} fraction of labels are 0 and $1-p_{0}=p_{1}$ fraction of the training set labels are 1 , the entropy is:

$$
\begin{aligned}
H(Y) & =p_{0} \log _{2}\left(\frac{1}{p_{0}}\right)+p_{1} \log _{2}\left(\frac{1}{p_{1}}\right) \\
& =-p_{0} \log _{2}\left(p_{0}\right)-p_{1} \log _{2}\left(p_{1}\right)
\end{aligned}
$$

Measure of Uncertainty

Definition

- If $p_{0}=0$ and $p_{1}=1$, the entropy is 0 , the outcome is certain, so there is no uncertainty.
- If $p_{0}=1$ and $p_{1}=0$, the entropy is 0 , the outcome is also certain, so there is no uncertainty.
- If $p_{0}=\frac{1}{2}$ and $p_{1}=\frac{1}{2}$, the entropy is the maximum 1 , the outcome is the most uncertain.

Entropy

Definition

- If there are K classes and p_{y} fraction of the training set labels are in class y, with $y \in\{1,2, \ldots, K\}$, the entropy is:

$$
\begin{aligned}
H(Y) & =\sum_{y=1}^{K} p_{y} \log _{2}\left(\frac{1}{p_{y}}\right) \\
& =-\sum_{y=1}^{K} p_{y} \log _{2}\left(p_{y}\right)
\end{aligned}
$$

Conditional Entropy

Definition

- Conditional entropy is the entropy of the conditional distribution. Let K_{X} be the possible values of a feature X and K_{Y} be the possible labels Y. Define p_{X} as the fraction of the instances that are x, and $p_{y \mid x}$ as the fraction of the labels that are y among the ones with instance x.

$$
\begin{aligned}
H(Y \mid X=x) & =-\sum_{y=1}^{K_{Y}} p_{y \mid x} \log _{2}\left(p_{y \mid x}\right) \\
H(Y \mid X) & =\sum_{x=1}^{K_{X}} p_{x} H(Y \mid X=x)
\end{aligned}
$$

Aside: Cross Entropy

Definition

- Cross entropy measures the difference between two distributions.

$$
H(Y, X)=-\sum_{z=1}^{K} p_{Y=z} \log _{2}\left(p_{X=z}\right)
$$

- It is used in logistic regression to measure the difference between actual label Y_{i} and the predicted label A_{i} for instance i, and at the same time, to make the cost convex.

$$
H\left(Y_{i}, A_{i}\right)=-y_{i} \log \left(a_{i}\right)-\left(1-y_{i}\right) \log \left(1-a_{i}\right)
$$

Information Gain

Definition

- The information gain is defined as the difference between the entropy and the conditional entropy.

$$
I(Y \mid X)=H(Y)-H(Y \mid X)
$$

- The larger than information gain, the larger the reduction in uncertainty, and the better predictor the feature is.

Splitting Discrete Features

Definition

- The most informative feature is the one with the largest information gain.

$$
\arg \max _{j} I\left(Y \mid X_{j}\right)
$$

- Splitting means dividing the training set into $K_{X_{j}}$ subsets.

$$
\left\{\left(x_{i}, y_{i}\right): x_{i j}=1\right\},\left\{\left(x_{i}, y_{i}\right): x_{i j}=2\right\}, \ldots,\left\{\left(x_{i}, y_{i}\right): x_{i j}=K_{x_{j}}\right\}
$$

Splitting Continuous Features

Definition

- Continuous features can be (arbitrarily) uniformly split into K_{X} categories.
- To construct binary splits, all possible splits of the continuous feature can be constructed, and the one that yields the highest information gain is used.

$$
\mathbb{1}_{\left\{x_{j} \leqslant x_{1 j}\right\}}, \mathbb{1}_{\left\{x_{j} \leqslant x_{2 j}\right\}}, \ldots, \mathbb{1}_{\left\{x_{j} \leqslant x_{n j}\right\}}
$$

- One of the above binary features is used in place of the original continuous feature X_{j}.

Choice of Thresholds

Definition

- In practice, the efficient way to create the binary splits uses the midpoint between instances of different classes.
- The instances in the training set are sorted by X_{j}, say $x_{(1) j}, x_{(2) j}, \ldots, x_{(n) j}$, and suppose $x_{(i) j}$ and $x_{(i+1) j}$ have different labels, then $\frac{1}{2}\left(x_{(i) j}+x_{(i+1) j}\right)$ is considered as a possible binary split.

$$
\mathbb{1}^{\left.\mathbb{x}_{j} \leqslant \frac{1}{2}\left(x_{(i) j}+x_{(i+1) j}\right)\right\}}
$$

Splitting Continuous Variables Diagram

Definition

ID3 Algorithm (Iterative Dichotomiser 3), Part I

Algorithm

- Input: instances: $\left\{x_{i}\right\}_{i=1}^{n}$ and $\left\{y_{i}\right\}_{i=1}^{n}$, feature j is split into K_{j} categories and y has K categories
- Output: a decision tree
- Start with the complete set of instances $\left\{x_{i}\right\}_{i=1}^{n}$.
- Suppose the current subset of instances is $\left\{x_{i}\right\}_{i \in S}$, find the information gain from each feature.

$$
I\left(Y \mid X_{j}\right)=H(Y)-H\left(Y \mid X_{j}\right)
$$

ID3 Algorithm (Iterative Dichotomiser 3), Part II

 Algorithm$$
\begin{aligned}
H(Y) & =-\sum_{y=1}^{K} \frac{\#(Y=y)}{\#(Y)} \log \left(\frac{\#(Y=y)}{\#(Y)}\right) \\
H\left(Y \mid X_{j}\right) & =-\sum_{x=1}^{K_{j}} \sum_{y=1}^{K} \frac{\#\left(Y=y, X_{j}=x\right)}{\#(Y)} \log \left(\frac{\#\left(Y=y, X_{j}=x\right)}{\#\left(X_{j}=x\right)}\right)
\end{aligned}
$$

- Find the more informative feature j^{\star}.

$$
j^{\star}=\arg \max _{j} I\left(Y \mid X_{j}\right)
$$

ID3 Algorithm (Iterative Dichotomiser 3), Part III

 Algorithm- Split the subset S into $K_{j \star}$ subsets.

$$
\begin{aligned}
S_{1} & =\left\{\left(x_{i}, y_{i}\right) \in S: x_{i j^{\star}}=1\right\} \\
S_{2} & =\left\{\left(x_{i}, y_{i}\right) \in S: x_{i j^{\star}}=2\right\} \\
& \ldots \\
S_{K_{x_{j^{\star}}}} & =\left\{\left(x_{i}, y_{i}\right) \in S: x_{i j^{\star}}=K_{x_{j^{\star}}}\right\}
\end{aligned}
$$

- Recurse over the subsets until $p_{y}=1$ for some y on the subset.

Pruning Diagram

Discussion

Pruning

Discussion

- Use the validation set to prune subtrees by making them a leaf. The leaf created by pruning a subtree has label equal to the majority of the training examples reaching this subtree.
- If making a subtree a leaf does not decrease the accuracy on the validation set, then the subtree is pruned.
- This is one of the simplest ways to prune a decision tree, called Reduced Error Pruning.

Bagging

Discussion

- Create many smaller training sets by sampling with replacement from the complete training set.
- Train different decision trees using the smaller training sets.
- Predict the label of new instances by majority vote from the decision trees.
- This is called bootstrap aggregating (bagging).

Random Forest

Discussion

- When training the decision trees on the smaller training sets, only a random subset of the features are used. The decision trees are created without pruning.
- This algorithm is called random forests.

Boosting

Discussion

- The idea of boosting is to combine many weak decision trees, for example, decision stumps, into a strong one.
- Decision trees are trained sequentially. The instances that are classified incorrectly by previous trees are made more important for the next tree.

Adaptive Boosting, Part I Discussion

- The weights w for the instances are initialized uniformly.

$$
w=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)
$$

- In each iteration, a decision tree f_{k} is trained on the training instances weighted by w.

$$
\begin{aligned}
& f_{k}=\arg \min _{f} \sum_{i=1}^{n} w_{i} \mathbb{1}_{\left\{f\left(x_{i}\right) \neq y_{i}\right\}} \\
& \varepsilon_{k}=\min _{f} \sum_{i=1}^{n} w_{i} \mathbb{1}_{\left\{f_{k}\left(x_{i}\right) \neq y_{i}\right\}}
\end{aligned}
$$

Adaptive Boosting, Part II

Discussion

- The weights for the tree f_{k} is computed.

$$
\alpha_{k}=\log \left(\frac{1-\varepsilon_{k}}{\varepsilon_{k}}\right)
$$

- The weights are updated according to the error ε made by f_{k}, and normalized so that the sum is 1 .

$$
w_{i}=w_{i} e^{-\alpha_{k}\left(2 \cdot \mathbb{1}_{\left\{f_{k}\left(x_{i}\right)=y_{i}\right\}}-1\right)}
$$

Adaptive Boosting, Part II

Discussion

- The label of a new test instance x_{i} is the α weighted majority of the labels produced by all K trees: $f_{1}\left(x_{i}\right), f_{2}\left(x_{i}\right), \ldots, f_{K}\left(x_{i}\right)$.
- For example, if there are only two classes $\{0,1\}$, and α is normalized so that the sum is 1 , then the prediction is the following.

$$
\left.\hat{y}_{i}=\mathbb{1}^{\{ } \sum_{k=1}^{K} \alpha_{k} f_{k}\left(x_{i}\right) \geqslant 0.5\right\}
$$

K Nearest Neighbor

Description

- Given a new instance, find the K instances in the training set that are the closest.
- Predict the label of the new instance by the majority of the labels of the K instances.

Distance Function

Definition

- Many distance functions can be used in place of the Euclidean distance.

$$
\rho\left(x, x^{\prime}\right)=\left\|x-x^{\prime}\right\|_{2}=\sqrt{\sum_{j=1}^{m}\left(x_{j}-x_{j}^{\prime}\right)^{2}}
$$

- An example is Manhattan distance.

$$
\rho\left(x, x^{\prime}\right)=\sum_{j=1}^{m}\left|x_{j}-x_{j}^{\prime}\right|
$$

Manhattan Distance Diagram

Definition

P Norms

Definition

- Another group of examples is the p norms.

$$
\rho\left(x, x^{\prime}\right)=\left(\sum_{j=1}^{m}\left|x_{j}-x_{j}^{\prime}\right|^{p}\right)^{\frac{1}{p}}
$$

- $p=1$ is the Manhattan distance.
- $p=2$ is the Euclidean distance.
- $p=\infty$ is the sup distance, $\rho\left(x, x^{\prime}\right)=\max _{i=1,2, \ldots, m}\left\{\left|x_{j}-x_{j}^{\prime}\right|\right\}$.
- p cannot be less than 1 .

K Nearest Neighbor

Algorithm

- Input: instances: $\left\{x_{i}\right\}_{i=1}^{n}$ and $\left\{y_{i}\right\}_{i=1}^{n}$, and a new instance \hat{x}.
- Output: new label \hat{y}.
- Order the training instances according to the distance to \hat{x}.

$$
\rho\left(\hat{x}, x_{(i)}\right) \leqslant \rho\left(\hat{x}, x_{(i+1)}\right), i=1,2, \ldots, n-1
$$

- Assign the majority label of the closest k instances.

$$
\hat{y}=\operatorname{mode}\left\{y_{(1)}, y_{(2)}, \ldots, y_{(k)}\right\}
$$

