Kernel SVM

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

June 29, 2021

Choose C

- A:
- B:
- C: Choose this.
- D:
- E:

Remind Me to Start Recording Admin

 The messages you send in chat will be recorded: you can change your Zoom name now before I start recording.

Kernel Trick 1D Diagram

- With a feature map φ , the SVM can be trained on new data points $\{(\varphi(x_1), y_1), (\varphi(x_2), y_2), ..., (\varphi(x_n), y_n)\}.$
- The weights w correspond to the new features $\varphi(x_i)$.
- Therefore, test instances are transformed to have the same new features.

Kernel Trick for XOR Quiz

March 2018 Final Q17

• March 2016 Final VII.
• SVM with quadratic kernel $\varphi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$ can

Kernel Trick for XOR

• SVM with kernel $\varphi(x) = (x_1, x_1x_2, x_2)$ can correctly classify

the following training set?

02

<i>x</i> ₁	<i>x</i> ₂	y
0	0	0
0	D	1
1	0	1
1	1	0

A: True.

B: False.

• The feature map is usually represented by a $n \times n$ matrix K called the Gram matrix (or kernel matrix).

$$K_{ii'} = \varphi(x_i)^T \varphi(x_{i'})$$

Examples of Kernel Matrix

Definition

• For example, if $\varphi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$, then the kernel matrix can be simplified.

$$K_{ii'} = \left(x_i^T x_{i'}\right)^2$$

• Another example is the quadratic kernel $K_{ii'} = (x_i^T x_{i'} + 1)^2$. It can be factored to have the following feature representations.

$$\varphi(x) = \left(x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1\right)$$

Examples of Kernel Matrix Derivation

Popular Kernels

Discussion

- Other popular kernels include the following.
- **1** Linear kernel: $K_{ii'} = x_i^T x_{i'}$
- 2 Polynomial kernel: $K_{ii'} = (x_i^T x_{i'} + 1)^d$
- Radial Basis Function (Gaussian) kernel:

$$K_{ii'} = \exp\left(-\frac{1}{\sigma_{i}^2} \left(x_i - x_{i'}\right)^T \left(x_i - x_{i'}\right)\right)$$

 Gaussian kernel has infinite-dimensional feature representations. There are dual optimization techniques to find w and b for these kernels.

Kernel Matrix

- Fall 2009 Final Q2
 - What is the feature vector $\varphi(x)$ induced by the kernel

$$K_{ii'} = \exp(x_i + x_{i'}) + \sqrt{x_i x_{i'}} + 3?$$

- A: $(\exp(x), \sqrt{x}, 3)$
- B: $\left(\exp\left(x\right), \sqrt{x}, \sqrt{3}\right)$
- C: $\left(\sqrt{\exp(x)}, \sqrt{x}, 3\right)$
- D: $\left(\sqrt{\exp(x)}, \sqrt{x}, \sqrt{3}\right)$
- E: None of the above

Kernel Matrix Math

A Decision Tree

Motivation

Decision Tree

- Split the training set into subsets according to this feature.
- Repeat on the subsets until all the labels in the subset are the same.

Binary Entropy

Definition

- The value of something uncertain is more informative than the value of something certain.
- For binary labels, $y_i \in \{0, 1\}$, suppose p_0 fraction of labels are 0 and $1 p_0 = p_1$ fraction of the training set labels are 1, the entropy is:

Entropy Definition

• If there are K classes and p_y fraction of the training set labels are in class \underline{y} , with $y \in \{1, 2, ..., K\}$, the entropy is:

$$H(Y) = \sum_{y=1}^{K} p_y \log_2 \left(\frac{1}{p_y}\right)$$

$$= -\sum_{y=1}^{K} p_y \log_2 (p_y)$$

$$= \sum_{y=1}^{K} p_y \log_2 (p_y)$$

Entropy Quiz

- Fall 2010 Final Q10
- Running from You-Know-Who, Harry enters the CS building on the 1st floor. He flips a fair coin: if it is heads he hides in room 1325; otherwise, he climbs to the 2nd floor. In that case, he flips the coin again: if it is heads he hides in CSL; otherwise, he climbs to the 3rd floor and hides in 3331. What is the entropy of Harry's location?
- A: 0.75
- B: 1
- C: 1.5
- D: 1.75
- E: None of the above.

Entropy Math Quiz

Entropy 2

- A bag contains a red ball, a green ball, a blue ball, and a black ball. Randomly draw a ball from the bag with equal probability. What is the entropy of the outcome?
 - A: 1
 - B: log₂ (3)
 - C: 1.5
 - D: 2 4 2
 - F: 4

$$[95] = \frac{109(6)}{199(2)}$$

$$H(Y) = -\sum_{i=1}^{4} P_i \log_2 P_i$$

$$\log_{2} \frac{1}{4} = -\log_{2} \frac{2}{2}$$

= -2/09.2 = -2

Conditional Entropy

Definition

 Conditional entropy is the entropy of the conditional distribution. Let K_X be the possible values of a feature X and K_Y be the possible labels Y. Define p_x as the fraction of the instances that are x, and p_{y|x} as the fraction of the labels that are y among the ones with instance x.

$$H(Y|X = x) = -\sum_{y=1}^{K_Y} p_{y|x} \log_2(p_{y|x})$$

$$H(Y|X) = \sum_{x=1}^{K_X} p_x H(Y|X = x)$$

may (XIO)

Aside: Cross Entropy

Definition

 Cross entropy measures the difference between two distributions.

 It is used in logistic regression to measure the difference between actual label Y_i and the predicted label A_i for instance i, and at the same time, to make the cost convex.

$$H(Y_i, A_i) = -y_i \log(a_i) - (1 - y_i) \log(1 - a_i)$$

Information Gain

Definition

 The information gain is defined as the difference between the entropy and the conditional entropy.

$$\sum_{X} W^{AX} = H(Y) - H(Y|X).$$

 The larger than information gain, the larger the reduction in uncertainty, and the better predictor the feature is.

Information Gain Example Quiz

• It has a house with many doors. A random door is about to be opened with equal probability. Doors 1 to 3 have monsters that eat people. Doors 4 to 6 are safe. With sufficient bribe, Pennywise will answer your question "Will door 1 be opened?" What's the information gain (also called mutual information) between Pennywise's answer and your encounter with a monster?

Information Gain Example

Quiz

 It has a house with many doors. A random door is about to be opened with equal probability. Doors 1 to 2 have monsters that eat people. Doors 3 to 4 are safe. With sufficient bribe, Pennywise will answer your question "Will door 1 be opened?". What's the information gain (also called mutual information) between Pennywise's answer and your encounter with a monster? Let $H_3 = -\frac{1}{3}\log_2\left(\frac{1}{3}\right) - \frac{2}{3}\log_2\left(\frac{2}{3}\right)$.

• A:
$$1 - \frac{1}{4} \cdot 0 - \frac{3}{4} \cdot 0$$

• B:
$$1 - \frac{1}{4} \cdot 0 - \frac{3}{4} \cdot H_3$$

• C:
$$1 - \frac{1}{4} \cdot H_3 - \frac{3}{4} \cdot 0$$

• D: $1 - \frac{1}{4} \cdot H_3 - \frac{3}{4} \cdot H_3$

• D:
$$1 - \frac{1}{4} \cdot H_3 - \frac{3}{4} \cdot H_3$$

Splitting Discrete Features Definition

 The most informative feature is the one with the largest information gain.

$$\underset{j}{\operatorname{arg max}} I(Y|X_j)$$

• Splitting means dividing the training set into K_{X_j} subsets.

$$\{(x_i, y_i) : x_{ij} = 1\}, \{(x_i, y_i) : x_{ij} = 2\}, ..., \{(x_i, y_i) : x_{ij} = K_{X_i}\}$$

Pruning Diagram

Discussion

Bagging and Boosting Diagram

Discussion

Description

- Given a new instance, find the K instances in the training set that are the closest.
- Predict the label of the new instance by the majority of the labels of the K instances.

Distance Function

Definition

 Many distance functions can be used in place of the Euclidean distance.

$$\rho(x, x') = ||x - x'||_2 = \sqrt{\sum_{j=1}^{m} (x_j - x_j')^2}$$

An example is Manhattan distance.

$$\rho\left(x,x'\right) = \sum_{j=1}^{m} \left| x_j - x_j' \right|$$

1 Nearest Neighbor

- Spring 2018 Midterm Q7
- Find the 1 Nearest Neighbor label for $\begin{bmatrix} 3 \\ 6 \end{bmatrix}$ using Manhattan distance.

<i>x</i> ₁	1	1	3	5	2
<i>X</i> ₂	1	7	3	4	5
У	0	1	1	0	0

A: 0

B: 1

3 Nearest Neighbor

• Find the 3 Nearest Neighbor label for $\begin{bmatrix} 3 \\ 3 \end{bmatrix}$ using Manhattan distance.

x_1	1	1	3	5	2
<i>x</i> ₂	1	7	3	4	5
У	0	1	1	0	0

- A: 0
- B: 1