CS540 Introduction to Artificial Intelligence Lecture 7

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

June 11, 2020

Computer Vision Examples, Part I

Motivation

- Image segmentation
- Image retrieval
- Image colorization
- Image reconstruction
- Image super-resolution
- Image synthesis
- Image captioning

Computer Vision Examples, Part II Motivation

- Style transfer
- Object tracking
- Visual question answering
- Human pose estimation
- Medical image analysis

Image Features Diagram

One Dimensional Convolution

Definition

• The convolution of a vector $x = (x_1, x_2, ..., x_m)$ with a filter $w = (w_{-k}, w_{-k+1}, ..., w_{k-1}, w_k)$ is:

$$a = (a_1, a_2, ..., a_m) = x * w$$

$$a_j = \sum_{t=-k}^k w_t x_{j-t}, j = 1, 2, ..., m$$

- w is also called a kernel (different from the kernel for SVMs).
- The elements that do not exist are assumed to be 0.

Two Dimensional Convolution

Definition

• The convolution of an $m \times m$ matrix X with a $(2k+1) \times (2k+1)$ filter W is:

$$A = X * W$$

$$A_{j,j'} = \sum_{s=-k}^{k} \sum_{t=-k}^{k} \underbrace{W_{s,t} X_{j-s,j'-t}, j, j'}_{} = 1, 2, ..., m$$

- The matrix W is indexed by (s, t) for s = -k, -k + 1, ..., k 1, k and t = -k, -k + 1, ..., k 1, k.
- The elements that do not exist are assumed to be 0.

Image Gradient

Definition

 The gradient of an image is defined as the change in pixel intensity due to the change in the location of the pixel.

$$\frac{\partial I(s,t)}{\partial s} \approx \frac{I\left(s + \frac{\varepsilon}{2}, t\right) - I\left(s - \frac{\varepsilon}{2}, t\right)}{\varepsilon}, \varepsilon = 1$$

$$\frac{\partial I(s,t)}{\partial t} \approx \frac{I\left(s, t + \frac{\varepsilon}{2}\right) - I\left(s, t - \frac{\varepsilon}{2}\right)}{\varepsilon}, \varepsilon = 1$$

Image Derivative Filters

Definition

 The gradient can be computed using convolution with the following filters.

Sobel Filter

Definition

 The Sobel filters also are used to approximate the gradient of an image.

$$W_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}, W_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Gradient of Images

Definition

• The gradient of an image I is $(\nabla_x I, \nabla_y I)$.

$$\frac{\nabla_{x}I = W_{x} * I, \nabla_{y}I = W_{y} * I}{(-2, -4)}$$

 The gradient magnitude is G and gradient direction Θ are the following.

$$G = \sqrt{\nabla_x^2 + \nabla_y^2}$$

$$\Theta = \arctan\left(\frac{\nabla_y}{\nabla_x}\right)$$

Gradient of Images Demo

 Scale Invariant Feature Transform (SIFT) features are features that are invariant to changes in the location, scale, orientation, and lighting of the pixels.

HOG

Discussion

Matching vs Classification Diagram

Discussion

• Find the gradient magnitude and direction for the center cell of the following image. Use the derivative filters $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and

Gradient Example Quiz

Quiz

What is the gradient magnitude for the center cell?

$$\nabla_{x} = \begin{bmatrix} -3 & -3 & 3 \\ -4 & -4 & 4 \\ -3 & -3 & 3 \end{bmatrix}, \nabla_{y} = \begin{bmatrix} -1 & -3 & -3 \\ 0 & 0 & 0 \\ 1 & 3 & 3 \end{bmatrix}$$

• A: 1, B: 2, C: 3, D: 4, E: 5

$$\int_{1}^{1} \times \sqrt{3} \times \sqrt{3}$$

$$\int_{1}^{1} \times \sqrt{3} \times \sqrt{3}$$

Quiz

What is the gradient direction bin for the center cell?

$$\nabla_{x} = \begin{bmatrix} -3 & -3 & 3 \\ -4 & -4 & 4 \\ -3 & -3 & 3 \end{bmatrix}, \nabla_{y} = \begin{bmatrix} -1 & -3 & -3 \\ 0 & 0 & 0 \\ 1 & 3 & 3 \end{bmatrix}$$

don4 use acréan

 $C = \frac{1}{2}(y_i - a_i)^2$ CZ (N Vigo: (0) (1-Gij)

Contre) 27

MSQZ MOrster - - - (og }

