CS540 Introduction to Artificial Intelligence Lecture 7

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

June 30, 2021

Hat Game

Quiz

- 5 kids are wearing either green or red hats in a party: they can see every other kid's hat but not their own.
- Dad said to everyone: at least one of you is wearing a green hat.
- Dad asked everyone: do you know the color of your hat?
- Everyone said no. < at lease 2
- Dad asked again: do you know the color of your hat?
- Everyone said no. ← GA (cese 3) ←
- Dad asked again: do you know the color of your hat?
- Some kids (at least one) said yes.
- No one lied. How many kids are wearing green hats?
- A: 1... B: 2...(C: 3... D: 4... E: 5

Remind Me to Start Recording

 The messages you send in chat will be recorded: you can change your Zoom name now before I start recording.

Decision Tree

Description

- Find the feature that is the most informative.
- Split the training set into subsets according to this feature.
- Repeat on the subsets until all the labels in the subset are the same.

ID3 Algorithm (Iterative Dichotomiser 3)

• The most informative feature X_j has the largest information gain:

$$\frac{I(Y|X_j) = H(Y) - H(Y|X_j)}{\int_{Y} \int_{Y} \int_{Y$$

K Nearest Neighbor

- Given a new instance, find the *K* instances in the training set that are the closest.
- Predict the label of the new instance by the majority of the labels of the K instances.

Distance Function

Definition

Many distance functions can be used in place of the <u>Euclidean</u> distance.

$$\rho\left(x,x'\right) = \left\|\underline{x} - x'\right\|_{2} = \sqrt{\sum_{j=1}^{m} \left(\underline{x_{j}} - x'_{j}\right)^{2}}$$

An example is Manhattan distance.

1 Nearest Neighbor

Spring 2018 Midterm Q7

Find the 1 Nearest Neighbor label for

distance.

• A: 0

B: 1

			0/0	0	✓		
	<i>x</i> ₁	1	1	3	5	2	
	<i>X</i> ₂	1	7	3	4	5	
	У	0	1	1	0	0	
•		K	3	2	4	()	

using Manhattan

3 Nearest Neighbor

Quiz

Computer Vision Examples

Motivation

Image Features Diagram

Motivation

One Dimensional Convolution

Definition

• The convolution of a vector $x = (x_1, x_2, ..., x_m)$ with a filter $w = (w_{-k}, w_{-k+1}, ..., w_{k-1}, w_k)$ is:

$$a = (a_1, a_2, ..., a_m) = x * w$$

$$a_j = \sum_{t=-k}^k w_t x_{j-t}, j = 1, 2, ..., m$$

- w is also called a kernel (different from the kernel for SVMs).
- The elements that do not exist are assumed to be 0.

Two Dimensional Convolution

Definition

• The convolution of an $m \times m$ matrix X with a

$$(2k+1) \times (2k+1)$$
 filter W is:

$$A = X * W$$

$$A_{j,j'} = \sum_{s=-k}^{k} \sum_{t=-k}^{k} W_{s,t} X_{j-s,j'-t}, j, j' = 1, 2, ..., m$$

- The matrix W is indexed by (s, t) for s = -k, -k + 1, ..., k 1, k and t = -k, -k + 1, ..., k 1, k.
- The elements that do not exist are assumed to be 0.

Convolution Diagram and Demo

Image Gradient

Definition

 The gradient of an image is defined as the change in pixel intensity due to the change in the location of the pixel.

$$\frac{\partial I\left(s,t\right)}{\partial s} \approx \frac{I\left(s+\frac{\varepsilon}{2},t\right) - I\left(s-\frac{\varepsilon}{2},t\right)}{\varepsilon}, \varepsilon = 1$$

$$\frac{\partial I\left(s,t\right)}{\partial t} \approx \frac{I\left(s,t+\frac{\varepsilon}{2}\right) - I\left(s,t-\frac{\varepsilon}{2}\right)}{\varepsilon}, \varepsilon = 1$$

Image Derivative Filters Definition

 The gradient can be computed using convolution with the following filters.

$$w_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}, w_{y} \begin{bmatrix} 0 & -1 \\ \hline 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Sobel Filter

Definition

 The Sobel filters also are used to approximate the gradient of an image.

$$W_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}, W_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Gradient of Images

Definition

• The gradient of an image I is $(\nabla_x I, \nabla_y I)$.

$$\nabla_{x}I = W_{x} * I, \nabla_{y}I = W_{y} * I$$

 The gradient magnitude is G and gradient direction Θ are the following.

$$G = \sqrt{\nabla_x^2 + \nabla_y^2}$$

$$\Theta = \arctan\left(\frac{\overline{\nabla}_y}{\nabla_x}\right)$$

Gradient of Images Demo

Definition

• Find the gradient magnitude and direction for the center cell

of the following image. Use the derivative filters and $0.070.0^{1} - 1(1) to 1$ $\begin{bmatrix}
-1 & 0 & 1
\end{bmatrix}$ $filter \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$

Gradient Example Quiz

Quiz

• A:
$$\begin{bmatrix} -1 & -3 & -3 \\ 0 & 0 & 0 \\ 1 & 3 & 3 \end{bmatrix}$$
, $B: \begin{bmatrix} -3 & -3 & 3 \\ -4 & -4 & 4 \\ -3 & -3 & 3 \end{bmatrix}$

• C:
$$\begin{bmatrix} -3 & -4 & -3 \\ -3 & -4 & -3 \\ 3 & 4 & 3 \end{bmatrix}$$
, $D: \begin{bmatrix} -1 & 0 & 1 \\ -3 & 0 & 3 \\ -3 & 0 & 3 \end{bmatrix}$

$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} * \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

• A:
$$\begin{bmatrix} -1 & -3 & -3 \\ 0 & 0 & 0 \\ 1 & 3 & 3 \end{bmatrix}, B: \begin{bmatrix} -3 & -3 & 3 \\ -4 & -4 & 4 \\ -3 & -3 & 3 \end{bmatrix}$$

• C:
$$\begin{bmatrix} -3 & -4 & -3 \\ -3 & -4 & -3 \\ 3 & 4 & 3 \end{bmatrix}$$
, $D: \begin{bmatrix} -1 & 0 & 1 \\ -3 & 0 & 3 \\ -3 & 0 & 3 \end{bmatrix}$

$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} * \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} * \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

• A:
$$\begin{bmatrix} -1 & -3 & -3 \\ 0 & 0 & 0 \\ 1 & 3 & 3 \end{bmatrix}, B: \begin{bmatrix} -3 & -3 & 3 \\ -4 & -4 & 4 \\ -3 & -3 & 3 \end{bmatrix}$$

• C:
$$\begin{bmatrix} -3 & -4 & -3 \\ -3 & -4 & -3 \\ 3 & 4 & 3 \end{bmatrix}$$
, $D: \begin{bmatrix} -1 & 0 & 1 \\ -3 & 0 & 3 \\ -3 & 0 & 3 \end{bmatrix}$

What is the gradient magnitude for the center cell?

$$\nabla_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -3 & 0 & 3 \\ -3 & 0 & 3 \end{bmatrix}, \nabla_{y} = \begin{bmatrix} -3 & -4 & -3 \\ -3 & -4 & -3 \\ 3 & 4 & 3 \end{bmatrix}$$

• A: 1, B: 2, C: 3, D: 4, E: 5

What is the gradient direction bin for the center cell?

$$\nabla_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -3 & 0 & 3 \\ -3 & 0 & 3 \end{bmatrix}, \nabla_{y} = \begin{bmatrix} -3 & -4 & -3 \\ -3 & -4 & -3 \\ 3 & 4 & 3 \end{bmatrix}$$

• A: -
$$\pi$$
, B: - $\frac{\pi}{2}$, C: 0, D: $\frac{\pi}{2}$, E: π

 Scale Invariant Feature Transform (SIFT) features are features that are invariant to changes in the location, scale, orientation, and lighting of the pixels.

Histogram Binning Diagram

Discussion

HOG Discussion

 Histogram of Oriented Gradients features is similar to SIFT but does not use dominant orientations.

Matching vs Classification Diagram

Discussion