CS540 Introduction to Artificial Intelligence Lecture 8

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

June 12, 2020

Review Session

Admin

- Midterm on June 30 and July 1.
- Review Sessions:
- Review Sessions:

 A: June 23 and June 24 (Monday and Tuesday).
 B: June 25 and June 26 (Wednesday and Thursday).

SIFT and HOG Features

Motivation

SUM

- SIFT and HOG features are expensive to compute.
- Simpler features should be used for real time face detection tasks.

Real Time Face Detection

Motivation

- Each image contains 10000 to 500000 locations and scales.
- Faces occur in 0 to 50 per image.
- Want a very small number of false positives.

Haar Features Diagram

Ind Gan

Weak Classifiers

Definition

 Each weak classifier is a decision stump (decision tree with only one split) using one Haar feature x.

$$f(x) = \mathbb{1}_{\{x > \theta\}} \qquad f(x) = \mathbb{1}_{\{x > \theta\}} \qquad f(x) = \mathbb{1}_{\{x > \theta\}}$$

 Finding the threshold by comparing the information gain from all possible splits is too expensive, so θ is usually computed as the average of the mean values of the feature for each class.

$$\theta = \frac{1}{2} \left(\frac{1}{n_0} \sum_{i:y_i=0} \frac{x_i}{x_i} + \frac{1}{n_1} \sum_{i:y_i=1} x_i \right)$$
where we have the solution of home faces

Strong Classifiers Definition

- The weak classifiers are trained sequentially using ensemble methods such as AdaBoost.
- A sequence of T weak classifiers is called aT -strong classifier.
- Multiple T -strong classifiers can be trained for different values of T and combined into a cascaded classifier.

Cascaded Classifiers

- Train and use aT -strong classifier with larger T on only the regions that are not rejected.
- Repeat this process with stronger classifiers.

Viola Jones Diagram

Discussion

neigh

The convolution filters used to obtain the features can be learned in a neural network. Such networks are called convolutional neural networks and they usually contain multiple convolutional layers with fully connected and softmax layers near the end.

Convolutional Layers

Definition

 In the (fully connected) neural networks discussed previously, each input unit is associated with a different weight.

$$a = g\left(w^T x + b\right)$$

 In the convolutional layers, one single filter (a multi-dimensional array of weights) is used for all units (arranged in an array the same size as the filter).

$$A = g\left(W * X + b\right)$$

2D Convolutional Layer Diagram

3D Convolutional Layer Diagram

LeNet Diagram and Demo

