CS540 Introduction to Artificial Intelligence Lecture 8

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

June 8, 2020

SIFT and HOG Features

Motivation

- SIFT and HOG features are expensive to compute.
- Simpler features should be used for real time face detection tasks.

Real Time Face Detection

Motivation

- Each image contains 10000 to 500000 locations and scales.
- Faces occur in 0 to 50 per image.
- Want a very small number of false positives.

Weak Classifiers

Definition

 Each weak classifier is a decision stump (decision tree with only one split) using one Haar feature x.

$$f(x) = \mathbb{1}_{\{x > \theta\}}$$

Finding the threshold by comparing the information gain from all possible splits is too expensive, so θ is usually computed as the average of the mean values of the feature for each class.

$$\theta = \frac{1}{2} \left(\frac{1}{n_0} \sum_{i:y_i=0}^{n_0} x_i + \frac{1}{n_1} \sum_{i:y_i=1}^{n_0} x_i \right)$$

Strong Classifiers Definition

- The weak classifiers are trained sequentially using ensemble methods such as AdaBoost.
- A sequence of T weak classifiers is called aT -strong classifier.
- Multiple T -strong classifiers can be trained for different values of T and combined into a cascaded classifier.

Cascaded Classifiers

Definition

- Start with aT -strong classifier with small T, and use it reject obviously negative regions (regions with no faces).
- Train and use a T -strong classifier with larger T on only the regions that are not rejected.
- Repeat this process with stronger classifiers.

Viola Jones Diagram

Discussion

• Find the gradient magnitude and direction for the center cell of the following image. Use the derivative filters $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$ and

Gradient Example

Quiz Gradient mognitude

Quiz

Quiz

What is the gradient magnitude for the center cell?

$$\nabla_{x} = \begin{bmatrix} -3 & -3 & 3 \\ -4 & -4 & 4 \\ -3 & -3 & 3 \end{bmatrix}, \nabla_{y} = \begin{bmatrix} -1 & -3 & -3 \\ 0 & 0 & 0 \\ 1 & 3 & 3 \end{bmatrix}$$

• A: 1, B: 2, C: 3, D: 4, E: 5

Quiz

not on midterm

What is the gradient direction bin for the center cell?

$$\nabla_{x} = \begin{bmatrix} -3 & -3 & 3 \\ -4 & -4 & 4 \\ -3 & -3 & 3 \end{bmatrix}, \nabla_{y} = \begin{bmatrix} -1 & -3 & -3 \\ 0 & 0 & 0 \\ 1 & 3 & 3 \end{bmatrix}$$

• A:
$$\left(0, \frac{\pi}{2}\right]$$
, B: $\left(\frac{\pi}{2}\pi\right)$, C: $\left(\pi, 3\frac{\pi}{2}\right]$, D: $\left(3\frac{\pi}{2}, 2\pi\right)$

Three Layer Neural Network Weights Diagram 1

Three Layer Neural Network Weights Diagram 2

Three Layer Neural Network Backpropogation Quiz

- Which of the following is correct for a three layer network?
 Assume there are 10 units in the first layer and 5 units in the second layer.
- Choices on the next page.

Three Layer Neural Network Backpropogation

Quiz

10 hidden 1

Softmax Diagram

Discussion

muteless logistic Softmax

Weight Count

 How many weights and biases are there in a (fully connected) three layer neural network with 2 input units, 3 hidden units in the first hidden layer, 2 hidden units in the second hidden

Weight Count 2

 How many weights (not including bias) are there in a (fully connected) two layer neural network with 10 input units, 5 hidden units, and 10 output units.

A: 50

• B: 55

C: 100 = 5.12-410. 5

D: 110

• E: 500

Weight Count 3

Quiz

- How many biases are there in a (fully connected) two layer neural network with 10 input units, 5 hidden units, and 10 output units.
- A: 5
- B: 10
- C: 15
 - D: 20
- E: 25

 The convolution filters used to obtain the features can be learned in a neural network. Such networks are called convolutional neural networks and they usually contain multiple convolutional layers with fully connected and softmax

No whavers near the end.

ent us

+ Cathre engineering

Convolutional Layers

Definition

 In the (fully connected) neural networks discussed previously, each input unit is associated with a different weight.

$$a = g\left(w^T x + b\right)$$

 In the convolutional layers, one single filter (a multi-dimensional array of weights) is used for all units (arranged in an array the same size as the filter).

$$A = g(W * X + b)$$

2D Convolutional Layer Diagram

3D Convolutional Layer Diagram

