CS540 Introduction to Artificial Intelligence Lecture 9

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

June 15, 2020

Spam or Ham?

Admin

- training data from SMS Spam Collection

Which one of the following messages is a spam?

Done Set.

- A: Go until jurong point, crazy. Available only in bugis n great world la e buffet... Cine there got a...
 - B: Ok lar... Joking wif u oni...
 - C: Free entry in 2a wkly comp to win FA Cup final tkts 21st May 2005. Text FA to 87121 to receive entr...
 - D: U dun say so early hor... Uc already then say...
 - E: Nah I don't think he goes to usf, he lives around here though

 grade PI, PZ

Spam or Ham? Visualization

Span

Admin

nam

Bag of Words Features

Definition

- Given a document i and vocabulary with size m, let c_{ij} be the count of the word j in the document i for j = 1, 2, ..., m.
- Bag of words representation of a document has features that are the count of each word divided by the total number of words in the document.

$$x_{ij} = \frac{c_{ij}}{\sum_{j'=1}^{m} c_{ij'}}$$

Bag of Words Features Example

Definition

Unigram models assume independence.

$$\mathbb{P}\{z_1, z_2, ..., z_d\} = \prod_{t=1}^d \mathbb{P}\{z_t\}$$

• In general, two events A and B are indepedent if:

$$\mathbb{P}\left\{A|B\right\} = \mathbb{P}\left\{A\right\} \text{ or } \mathbb{P}\left\{A,B\right\} = \mathbb{P}\left\{A\right\}\mathbb{P}\left\{B\right\}$$

For sequence of words, independence means:

$$\mathbb{P}\left\{z_{t} | z_{t-1}, z_{t-2}, ..., z_{1}\right\} = \mathbb{P}\left\{z_{t}\right\}$$

Maximum Likelihood Estimation

Definition

• $\mathbb{P}\{z_t\}$ can be estimated by the count of the word z_t .

 This is called the maximum likelihood estimator because it maximizes the probability of observing the sentences in the training set.

Bigram Model

Definition

Bigram models assume Markov property.

$$\mathbb{P}\{\underline{z_1, z_2, ..., z_d}\} = \mathbb{P}\{z_1\} \prod_{t=2}^{d} \mathbb{P}\{\underline{z_t} | \underline{z_{t-1}}\}$$

 Markov property means the distribution of an element in the sequence only depends on the previous element.

$$\mathbb{P}\left\{z_{t}|z_{t-1},z_{t-2},...,z_{1}\right\} = \mathbb{P}\left\{z_{t}|z_{t-1}\right\}$$

Bigram Model Estimation

Definition

 Using the conditional probability formula, P {z_t|z_{t-1}}, called transition probabilities, can be estimated by counting all bigrams and unigrams.

$$\hat{\mathbb{P}}\left\{z_{t}|z_{t-1}\right\} = \frac{c_{z_{t-1},z_{t}}}{c_{z_{t-1}}} + \frac{c_{z_{t-1},z_{t}}}{c_{z_{t-1}}}$$

$$\hat{\mathbb{P}}\left\{z_{t}|z_{t-1}\right\} = \frac{c_{z_{t-1},z_{t}}}{c_{z_{t-1}}} + \frac{c_{z_{t-1}}}{c_{z_{t-1}}}$$

$$\hat{\mathbb{P}}\left\{z_{t}|z_{t-1}\right\} = \frac{c_{z_{t-1},z_{t}}}{c_{z_{t-1}}} + \frac{c_{z_{t-1}}}{c_{z_{t-1}}}$$

Unigram MLE Probability 1

Given the training data "I am Iron Man", "I love you 3000",
"I love you mom", "Tell my family I love them", 18 words in
total. With the unigram model, what is the probability of
observing a new sentence "I love"?

Bigram MLE Probability 1

• Given the training data "I am Iron Man", "I love you 3000", "I love you mom", "Tell my family I love them", 18 words in total. With the bigram model, what is the probability of observing $Z_2 =$ "love" given the sentence starts with $Z_1 =$ "I"?

Pr [love |] =

CI love = 3 xx CI 4xx

Unigram MLE Probability 2

- Given the training data "I am Groot am I", with the unigram model, what is the probability of observing a new sentence "I am I"?
- A: $\frac{2}{5}$
- B: $\frac{2}{25}$
- C: $\frac{4}{25}$
- D: $\frac{4}{125}$
- E: $\frac{8}{125}$

Bigram MLE Probability 2

- Given the training data "I am Groot am I" with the bigram model, what is the probability of observing a new sentence";
 - am [" given the first word is "I"?
- A: $\frac{1}{2}$
- B: $\frac{1}{4}$
- C: $\frac{1}{5}$
- D: $\frac{1}{10}$
- E: $\frac{4}{25}$

Bigram MLE Probability 3

- Given the training data "I am Groot am I", with the bigram model, what is the probability of observing a new sentence "I am Groot" given the first word is "I"?
- A: $\frac{1}{2}$
- B: ¹/₄
- C: $\frac{1}{5}$
- D: $\frac{1}{10}$
- E: $\frac{4}{25}$

Transition Matrix

Definition

• These probabilities can be stored in a matrix called transition matrix of a Markov Chain. The number on row j column j' is the estimated probability $\hat{\mathbb{P}}\{j'|j\}$. If there are 3 tokens $\{1,2,3\}$, the transition matrix is the following.

$$\begin{bmatrix}
\hat{\mathbb{P}} \{1|1\} & \hat{\mathbb{P}} \{2|1\} & \hat{\mathbb{P}} \{3|1\} \\
\hat{\mathbb{P}} \{1|2\} & \hat{\mathbb{P}} \{2|2\} & \hat{\mathbb{P}} \{3|2\} \\
\hat{\mathbb{P}} \{1|3\} & \hat{\mathbb{P}} \{2|3\} & \hat{\mathbb{P}} \{3|3\}
\end{bmatrix}$$

 Given the initial distribution of tokens, the distribution of the next token can be found by multiplying it by the transition probabilities.

Trigram Model

Definition

 The same formula can be applied to trigram: sequences of three tokens.

$$\hat{\mathbb{P}}\left\{z_{t}|z_{t-1},z_{t-2}\right\} = \underbrace{c_{z_{t-2},z_{t-1},z_{t}}}_{c_{z_{t-2},z_{t-1}}}$$

• In a document, it is likely that these longer sequences of tokens never appear. In those cases, the probabilities are $\frac{0}{0}$. Because of this, Laplace smoothing adds 1 to all counts.

Laplace Smoothing

Definition

 Laplace smoothing should be used for bigram and unigram models too.

$$\hat{\mathbb{P}} \{ z_t | z_{t-1} \} = \frac{c_{z_{t-1}, z_t} + 1}{c_{z_{t-1}} + m}$$

$$\hat{\mathbb{P}} \{ z_t \} = \frac{c_{z_t} + 1}{\sum_{z=1}^{m} c_z + m}$$

 Aside: Laplace smoothing can also be used in decision tree training to compute entropy.

Smoothing Example Quiz

- Fall 2018 Midterm Q12.
- Given a vocabulary of 10^6 , a document with 10^{12} tokens with $c_{\text{zoodles}} \neq 3$ What is the MLE estimation of \mathbb{P} { zoodles } with and without Laplace smoothing?

$$\frac{C_{z}+1}{(5c_{z'})+m}=\frac{3+1}{10^{12}+10^{6}}$$

Smoothing Example 2

- Given a vocabulary of 5, a document with 30 words with $c_{\text{Groot}} = 10$. What is the MLE estimation of $\mathbb{P}\{\text{Groot}\}$ with Laplace smoothing?
- A: $\frac{1}{2}$

- C: $\frac{1}{3}$
- D: $\frac{11}{31}$
- E: $\frac{1}{4}$

Smoothing Example 3

- Given a vocabulary of 5, a document with 30 words with $c_{\text{I Groot}} = 0, c_{\text{I}} = 9, c_{\text{Groot}} = 10$. What is the MLE estimation of \mathbb{P} { Groot | I } with Laplace smoothing?
- A: $\frac{1}{10}$
- B: $\frac{1}{11}$
- C: $\frac{1}{14}$
 - D: $\frac{1}{15}$
- —**∞** E: <u>0</u>

$$\frac{Q6}{9 \cdot c} = \frac{1}{14}$$

CDF Inversion Method Diagram

Generating New Words 1 Quiz

• Given the transition matrix for words "I" "am" "Groot", starting a sentence with the "I" and a uniform random variable u = 0.5 is produced. What is the next word?

Generating New Words 2

back @ 6:40

• Given the transition matrix for words "I" "am" "Groot", starting a sentence with the "am" and a uniform random variable u = 0.5 is produced. What is the next word?

