Quiz2 in guest lecture RL

Q 7.12.13.14

Q7

$84 \times 84 \times 1=>7 \times 7 \times 2$ zero pad=3 (mode="same")=>90x90x1
$=>84 \times 84 \times 2=>3 \times 3$ pooling
$=>28 \times 28 \times 2=>(28 \times 28 \times 2) \times 4$
=>4

Q12

$-4-3 \underline{-2 \quad 81022}$

Red in blue's 3nn
Blue is not in red's $3 n n$

Q13

5 kids
(1) We know one of them is girl $P($ boy $>=1 \mid A m y=g i r l)$
(2) We know there is a girl $P(b o y>=1 \mid$ there is a girl)
(1) $P(\#$ boy $>=1 \mid A m y=$ girl, there are 5 kids)
$=P\left(\#\right.$ boy $>=1 \mid$ there are 4 unknown kids) $=1-0.5^{\wedge} 4$
(2) P (\# boy>=1|there is at least one girl in 5 kids)
$=P(\#$ boy $>=1$, there is at least one girl in 5 kids$) / P$ (there is at least one girl in 5 kids)
$=\left(1-0.5^{\wedge} 5-0.5^{\wedge} 5\right) /\left(1-0.5^{\wedge} 5\right)=30 / 31$
P(\#boy =5) P(\#girl =5)

$$
\begin{aligned}
& \text { U } 14 \\
& \text { SO S1 S2 s0=[1,0,0] } \\
& \text { 00, 01. o0 } \\
& \mathrm{T}=[0.38,0.2,0.42 \text {; } \\
& \text { 0.33,0.37,?; } \\
& \text { ?,?,?] } \\
& \mathrm{s} 1=\mathrm{s} 0^{*} \mathrm{~T} \\
& \mathrm{~s} 2=\mathrm{s} 0^{*} \mathrm{~T}^{*} \mathrm{~T} \\
& \mathrm{P} \text { (happy/angry|S1/S2/S3) } \\
& P(o 0=01, o 1=00 \mid s 0=[1,0,0]) \\
& P(o T=01, o(T+1)=00 \mid s 0=[1,0,0]) \text { when } T=>i n f
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{s} 1=\mathrm{s} 0 * \mathrm{~T} \\
\mathrm{~s} 2=\mathrm{s} 1 * \mathrm{~T} & \mathrm{~T}=\left[\begin{array}{l}
0.38,0.2,0.42 ; \\
?, ?, ? ; \\
?, ?, ?]
\end{array}\right.
\end{array}
$$

T is a transition matrix

Q?: what is st when t-> inf
st = [?, ?, ?]
We know T
We need to calculate st when t-> inf

$$
\begin{aligned}
& \mathrm{S} 0=[0.5,0.5] \\
& \mathrm{v} 1=[1,0] \\
& \mathrm{V} 2=[0,1] \\
& <\mathrm{Vi}, \mathrm{~V} j>=0 \\
& \mathrm{~S} 0=0.5^{*} \mathrm{~V} 1+0.5^{*} \mathrm{~V} 2
\end{aligned}
$$

Phi(x1)
phi(x2)

- [<phi(x1), phi(x1)>, [<phi(x1), phi(x2)>;
- <phi(x2),phi(x1)>, [<phi(x2),phi(x2)>]

Statement for $T(n$ by $n)$: n states. $P(S a->S a)+P(S a->S b)+P(S a->S c)+\ldots$.
T : sum of each row of the T is 1
All element of $\mathrm{T}>=0$

For this T
$\mathrm{V}^{*} \mathrm{~T}=$ lambda*V
One of the lambdas is 1 , all the other is smaller than 1
$\mathrm{V}^{*} \mathrm{~T}=\mathrm{V}$ when lambda $=1$
$\mathrm{V} * \mathrm{~T}<\mathrm{V}$ when lambda < 1

$$
\begin{aligned}
& \text { s0, s1=s0*T, s2=s0*T*T, s3=s0*T*T*T } \\
& \text { s0 = a1*v1+a2*v2+a3*v3....... } \\
& s 0^{*}\left(T^{\wedge} N\right)=a 1^{*} v 1^{*} T^{\wedge} N+a 2^{*} \vee 2^{*} T^{\wedge} N+a 3^{*} \vee 3^{*} \operatorname{lambda\wedge } N . . . \\
& =a 1^{*} \mathrm{v} 1+\mathrm{a} 2^{*} \mathrm{v} 2 \quad \text { when } \mathrm{N} \text {-> inf }
\end{aligned}
$$

Q11

- 10 features
- 3 possible split
- Passed 6 split $0->1->2->3->4->5->6->$ 10*3

A,b,c, d,e,f,g
Use another feature
d,e, f,g

$$
3.5
$$

Candidate split: 1.5,2.5, 3.5

