$$
\begin{gathered}
M \perp 6 \\
Q 1,11,12,13 \\
Q 9,4,2,8
\end{gathered}
$$

Q1
 10 persons

$A(1) \backslash B(9)$	$Y(>=1$ report $)$ $1-(1-q)^{\wedge 9}$	N $(1-q)^{\wedge 9}$
$Y(p)$	$5-3$	$5-3$
$N(1-p)$	5	0

($\mathrm{p}=\mathrm{q}$)
Expected reward of A: $p^{*} 2+(1-p)^{*} 5^{*}\left(1-(1-q)^{\wedge} 9\right)$
$d A / d p=2-5\left(1-(1-q)^{\wedge} 9\right)=-3+5^{*}(1-q)^{\wedge} 9=0=>.(1-q)^{\wedge} 9=3 / 5$
$(1-q)^{\wedge} 10=(3 / 5)^{\wedge}(10 / 9)$

Q11
-7. $(-4,-3,-2,8,10)$ $x>-1(-4+3)$

Q12

$$
\begin{array}{lll}
+(+2) & -(+1) & +(+2) \\
-(-1) & -(-4) & -(+1) \\
-(-2) & -(-1) & +(+2)
\end{array}
$$

Q13

- 19 R F

N firm to R

From N firm who pollute the river: $15^{*} \mathrm{~N} \rightarrow 10 *(\mathrm{~N}-1)+60$
From 19-N firm who build filter: $10 * \mathrm{~N}+60 \rightarrow 15^{*}(\mathrm{~N}+1)$
$15^{*} \mathrm{~N}<=10^{*}(\mathrm{~N}-1)+60 . \quad 5 \mathrm{~N}<=50$
$10 * N+60<=15^{*}(N+1) . \quad 45<=5 N$
$\mathrm{N}=9$ or $\mathrm{N}=10$

Q9

A \B	I	II	III	IV
I	$3,-10$	$11,-8$	$7,-7$	$6,-5$
II	$7,-3$	$13,-3$	$13,-6$	$8,-2$
III	$0,-9$	$7,-4$	$5,-11$	$3,-8$
IV	$8,-1$	$11,-6$	$12,-9$	$\mathbf{5 , 2}$

For player A , action 2 is strictly better than action 1
For player B, action 4 is strictly better than action 3

Q4

Row \backslash Col	L	R
$U(p)$	9,5	9,0
$D(1-p)$	9,0	0,10

If the C player choose L, Row do not care about p If the C player choose $R \rightarrow$ Row will have $p=1 \rightarrow C$ player choose L

When will C player choose L?
Expect reward for C(C choose L with 100\%) $=$ p*5
Expect reward for C(C choose R with 100\%) $=(1-p)^{*} 10$
$R(C$ choose $L)>=R(C$ choose $R)$
P*5 >= (1-P)*10
$P>=2 / 3$
$P<=1$

Q2

- 266
- Long (266-N): $1 . \quad 1 \rightarrow(N+1) / 19$
- Direct (N): n/19. N/19 $\rightarrow 1$
- $1<=(N+1) / 19 \quad 18<=N$
- $\mathrm{N} / 19<=1 . \quad \mathrm{M}<=19$
- $\mathrm{N}=18$ or $\mathrm{N}=19$
- 266 - N

Romeo \Juliet	Bach (q)	Stravinsky (1-q)
Bach (p)	$6,3(\mathrm{pq})$	$0,0(p(1-q))$
Stravinsky (1-p)	$0,0 .((1-p) q)$	$3,6((1-p)(1-q))$

First P
Second Q

First cannot find better P conditioned on Q Second cannot find better Q conditioned on P

Expected reward for R player: $\mathrm{p}^{*} \mathrm{q}^{*} 6+(1-\mathrm{p})^{*}(1-\mathrm{q})^{*} 3$
Expected reward for C player: $\mathrm{p}^{*} \mathrm{q}^{*} 3+(1-p)^{*}(1-q)^{*} 6$
$d R^{\prime}$ Reward(p)/dp $=q^{*} 6-(1-q)^{*} 3=0 . \quad q=1 / 3$
$d C^{\prime}$ Reward(q)/dq $=p^{*} 3-(1-p)^{*} 6=0 . \quad p=2 / 3$
$2 / 9 * 6+2 / 9 * 3=2$

$w^{*} x+b=[w, b]^{*}[x, 1]$. Who wio

$\mathrm{x} \rightarrow \mathrm{x}^{*} \mathrm{w} 1+\mathrm{b} 1=[\mathrm{x}, 1] *$ wih \rightarrow sigmoid \rightarrow hidden (28)
hidden (28) \rightarrow hidden*w2+b2 $=[$ [hiddent,1]*who \rightarrow value [-inf,+inf] (value - $=>0$; value $+=>1$) \rightarrow sigmoid \rightarrow pre \backslash in $[0,1]$ y $\{0,1\}$ (value $<0.5=>0$, value >0.5 =>1)
Loss $=$ Loss $($ pre, y$)=$ crossentropy
Gradient d loss/ d w1
D loss/ d b1
Sigmoid $(x)=$ return $1 /\left(1+e^{\wedge} x\right)$
Sigmoid ->function return [0,1] -> 0,1
[-inf, +inf]

