

CS540 Summer 2023

Attention and Transformers

Jiang, Yuye

PhD student in Computer Sciences

Participation game (on TopHat)

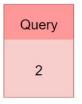
What is the full name of "GPT"?

- A. Generic Pre-trained Transformers
- B. Generic Pre-trained Tensors
- C. Generative Pre-trained Transformers
- D. Generative Probabilistic Transformer

Background

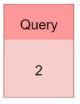
- Attention Mechanism
 - Bahdanau et. al. 2014. Neural Machine Translation by Jointly Learning to Align and Translate.
 - Originally developed as an enhancement of RNN applied to translation task
- Transformer Model
 - Vaswani et. al. 2017. Attention is All you Need.
 - First transduction model relying entirely on self-attention to compute representations of its input and output
 - Backbone of the modern large language models & CV models, etc
 - GPT = Generative Pre-trained Transformer

The thing your customer is interested in

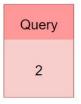


Key	Value			
1	100			
2	200			
3	300			

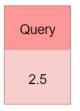
The thing your customer is interested in



The thing your customer is interested in

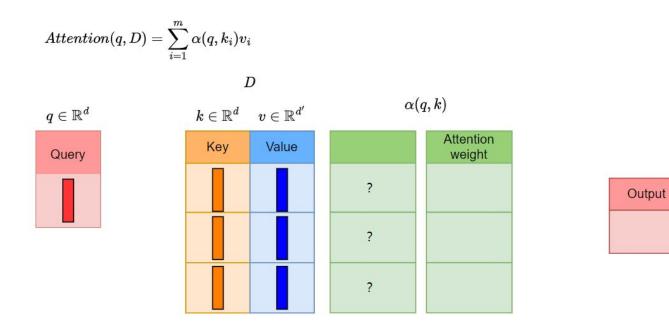


The thing your customer is interested in



$$Attention(q,D) = \sum_{i=1}^m lpha(q,k_i) v_i$$





q

 $\alpha(q,k)$

Value

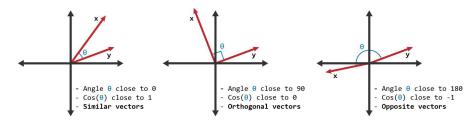
Attention Scoring function a(q, k)

Any function that captures similarity between q and k for your task

A common one: scaled dot-product attention

$$a(q,k) = rac{q^T k}{\sqrt{d}}$$

vector direction more similar \rightarrow dot-product higher See: cosine similarity



Qu

$$Attention(q, D) = \sum_{i=1}^{m} \alpha(q, k_i) v_i$$

$$p$$

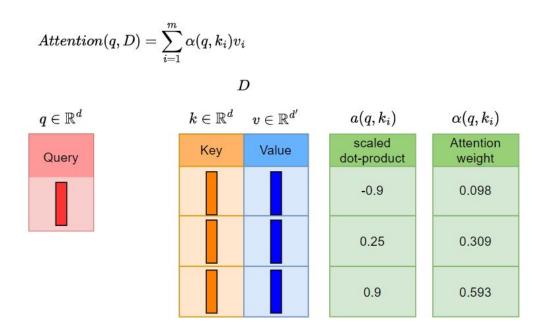
$$q \in \mathbb{R}^d \qquad k \in \mathbb{R}^d \quad v \in \mathbb{R}^{d'}$$
Query
Query
Query

 $a(q,k_i)$ Attention score -0.9 0.25 0.9

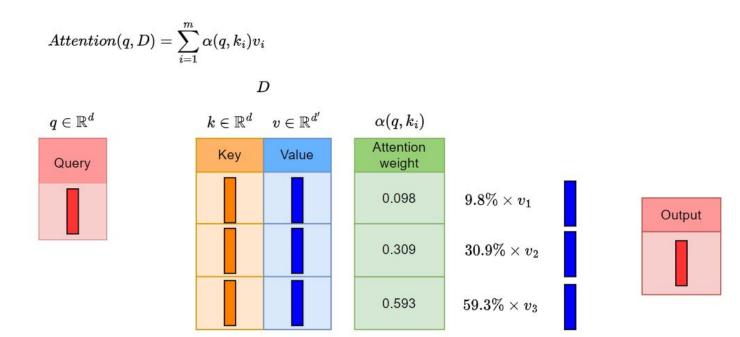
Attention score does not follow probability distribution

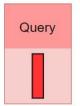
convert this to a probability via softmax function

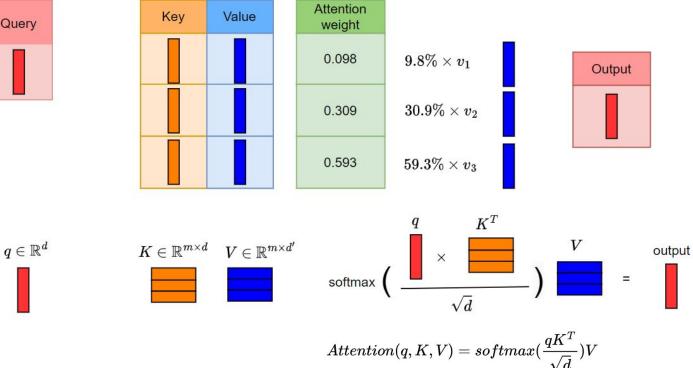
$$softmax(a(q,k_i)) = rac{e^{a(q,k_i)}}{\sum_{j=1}^m e^{a(q,k_i)}}$$

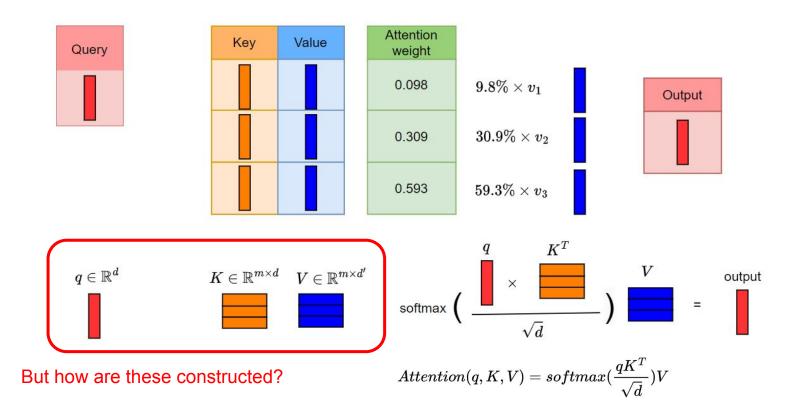


$$lpha(q,k_i)=softmax(a(q,k_i))$$

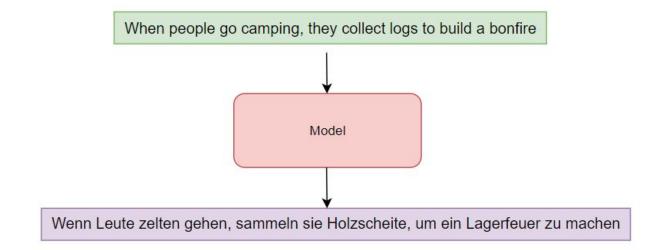








Machine Translation



A cat is sleeping on a red sofa

A dog is sitting on a green chair

one-hot encoding:

	а	0		0
vocab	cat	1		0
	is	0		0
	sleeping	0	dog =	0
	on	0		0
	red sofa	cat = 0		0
		0		0
	dog	0		1
	sitting	0		0
	green	0		0
	chair	0		0

Can be used for numerical computation

No similarity measurement

cannot tell "cat" & "dog" similar and tend to appear in similar context & position

2-d embedding

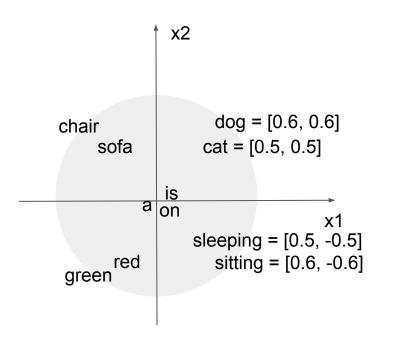
A cat is sleeping on a red sofa

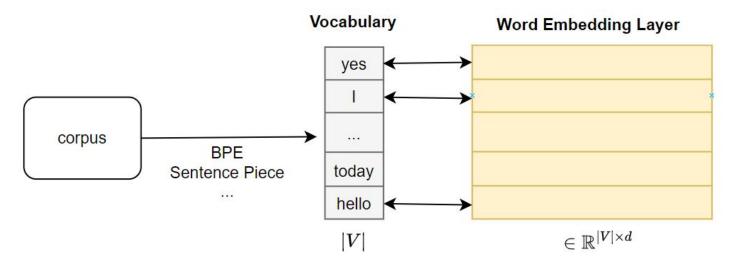
A dog is sitting on a green chair

Each word is converted to a vector

- can input to neural network
- can learn similarity between words

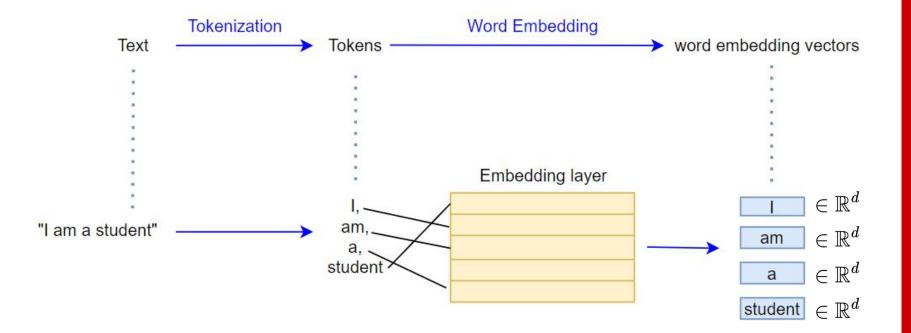
For the many words in languages, usually pick a very large embedding dimension, for example d = 768





Learnable and updated with the model

d: embedding dimension, usually picked to be a high number like 768



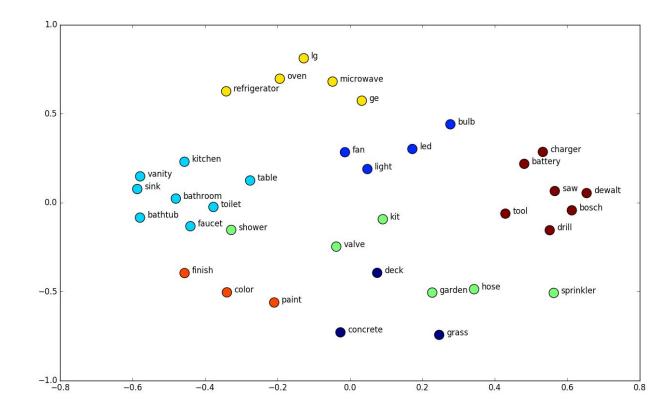
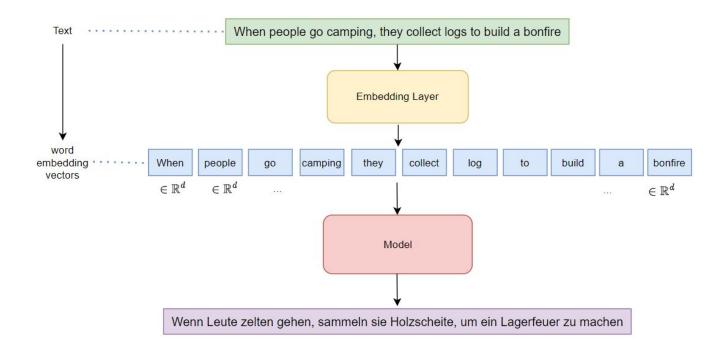
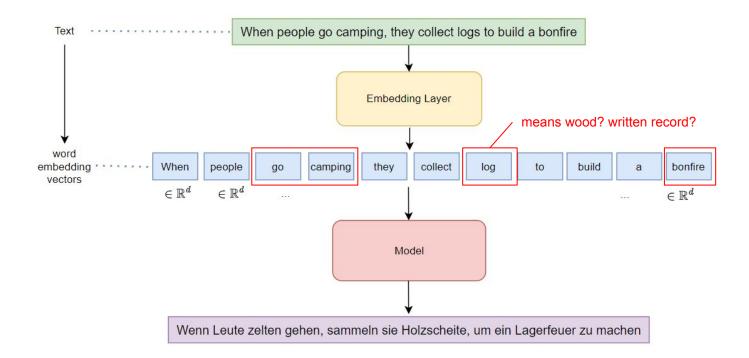
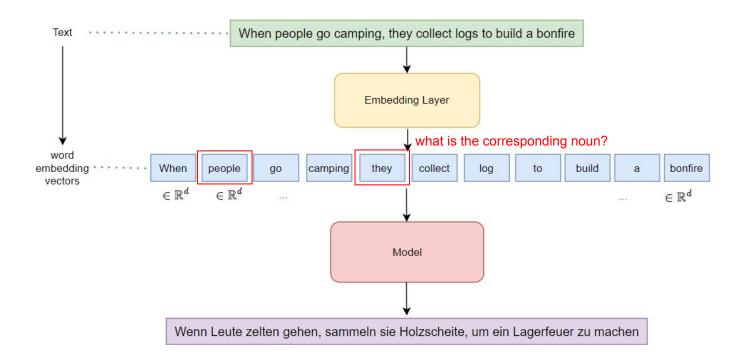


image source







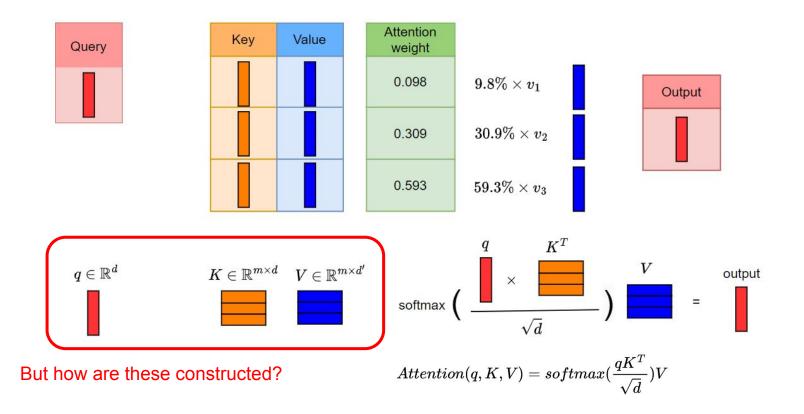
Self-attention

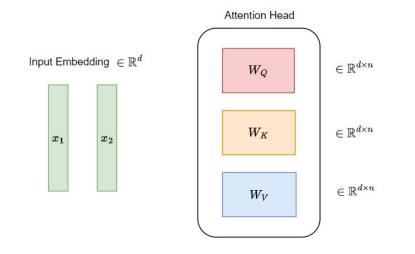
When	people	go	camping	they	collect	log	to	build	а	bonfire	
------	--------	----	---------	------	---------	-----	----	-------	---	---------	--

"Every word needs to pay attention to each other"

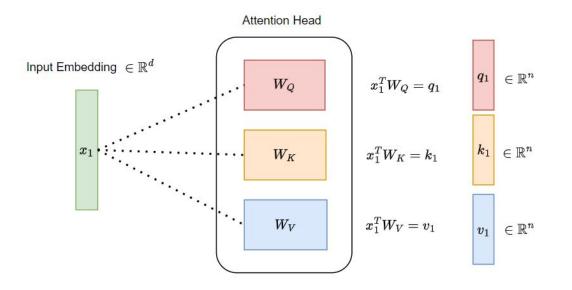
"Every word should pay more attention to the other word thats is related to it"

Reminder of our initial question

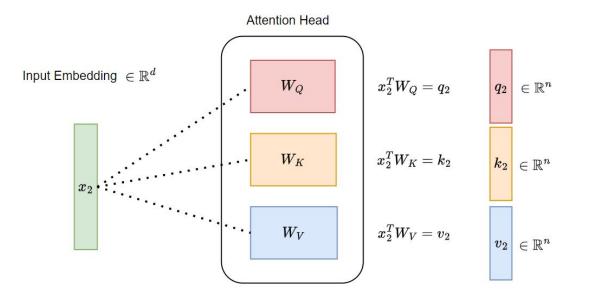


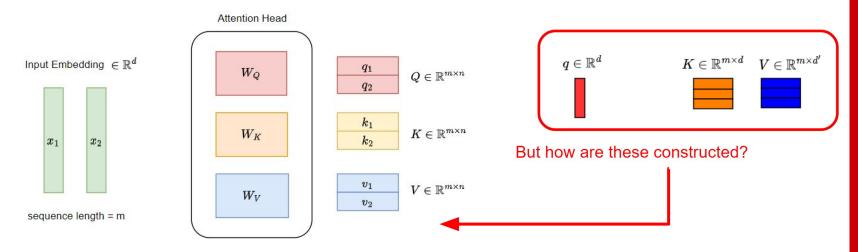


Multiply the first embedding vector with each matrix

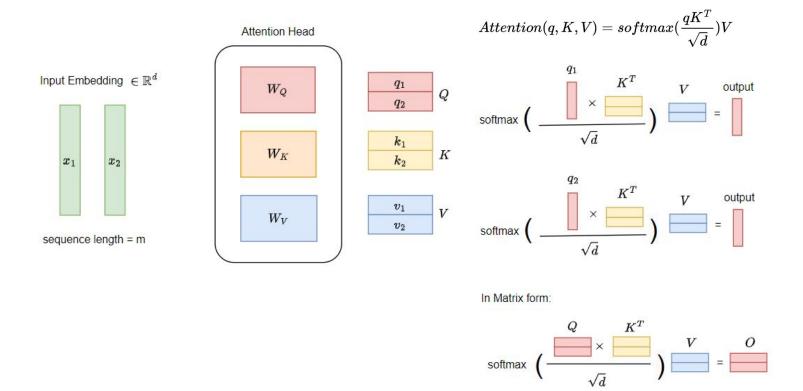


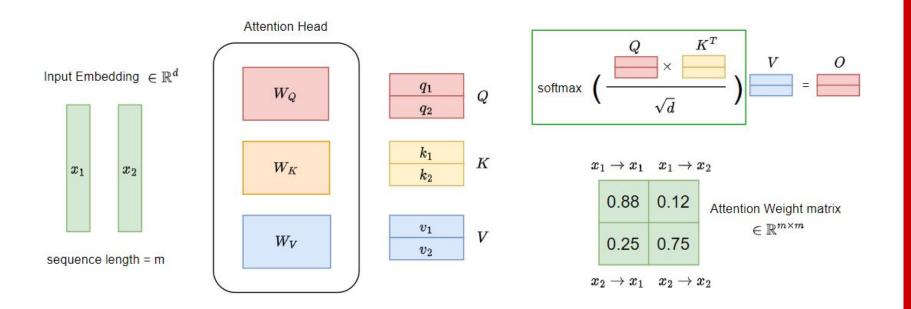
Multiply the second embedding vector with each matrix

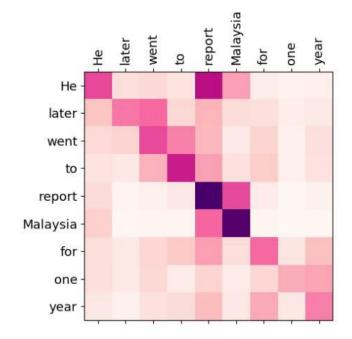


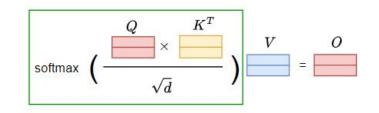


The query, key and value for each word is calculated from all the m words in the same sentence, using shared learnable matrices









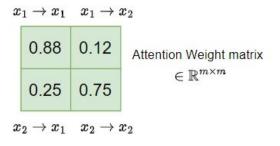
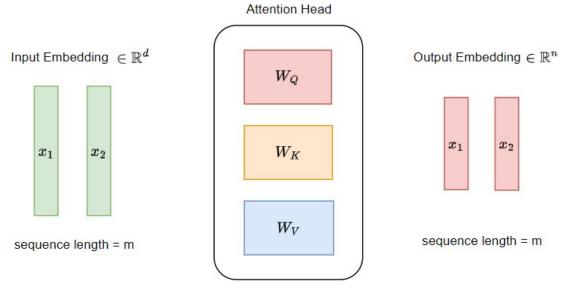
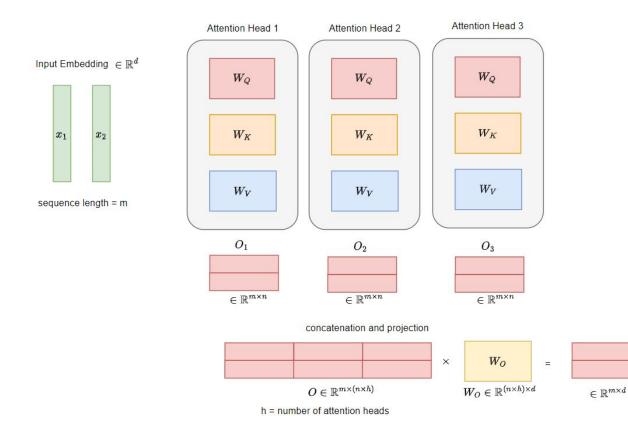


image source

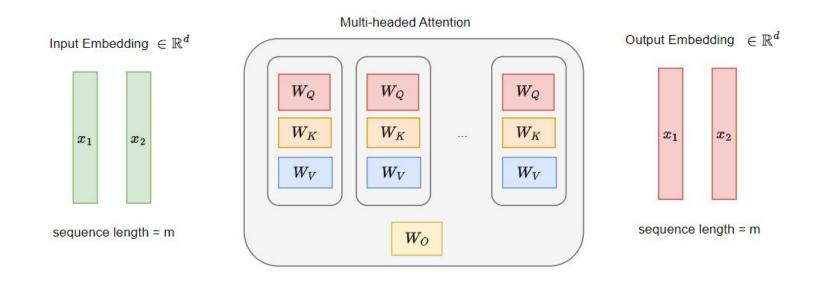


learnable parameters

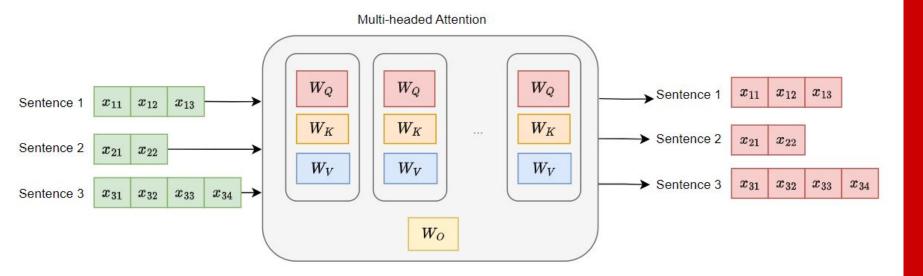
Multi-headed Attention



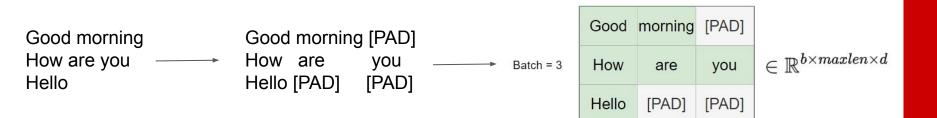
Multi-headed Attention

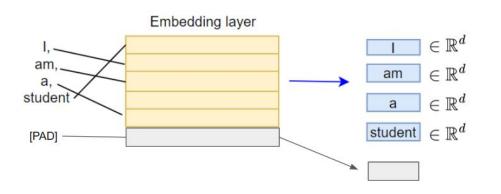


Multi-headed Attention



Batch of input sentences





Insert padding

maxlen = maximum sequence length in this batch

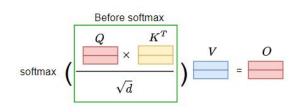
Don't want padding to affect training

Attention Mask

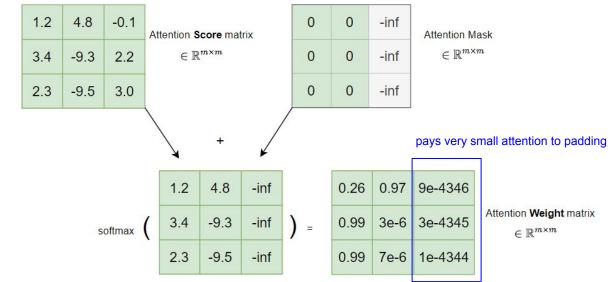
Good	morning	[PAD]		0	0	-inf
How	are	you	~~~~	0	0	0
Hello	[PAD]	[PAD]	← →→	0	-inf	-inf
input				attention mask		

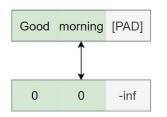
-inf represents a very small negative number

Attention Mask

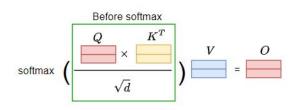


 $x_1
ightarrow x_1 \ x_1
ightarrow x_2 \ x_1
ightarrow x_3$

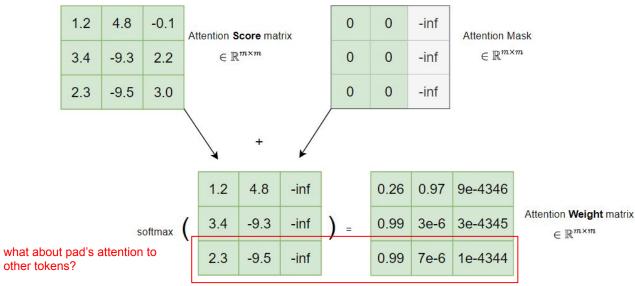


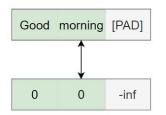


Attention Mask

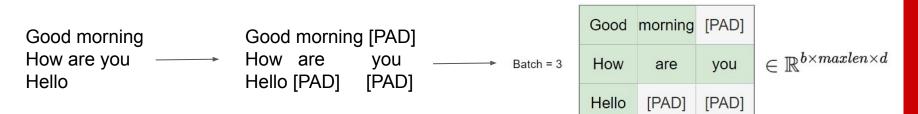


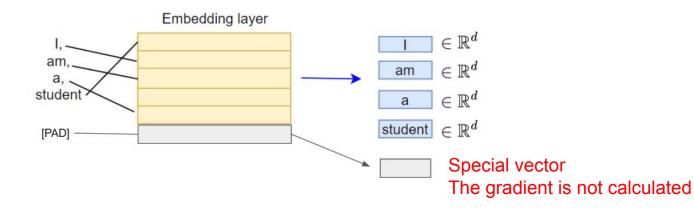
 $x_1
ightarrow x_1 \ x_1
ightarrow x_2 \ x_1
ightarrow x_3$



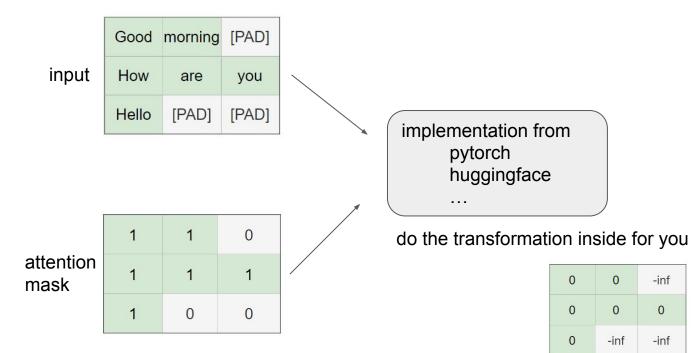


Batch of input sentences

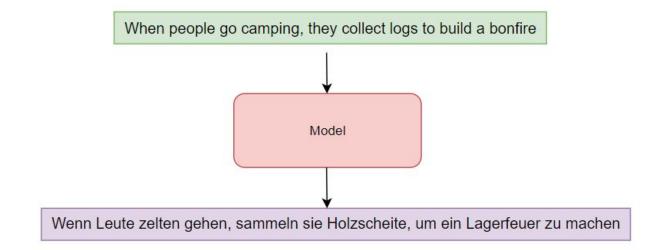




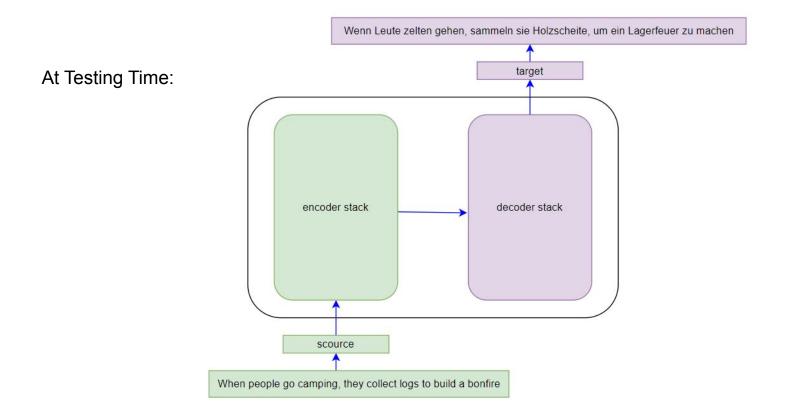
Attention Mask in libraries



Machine Translation

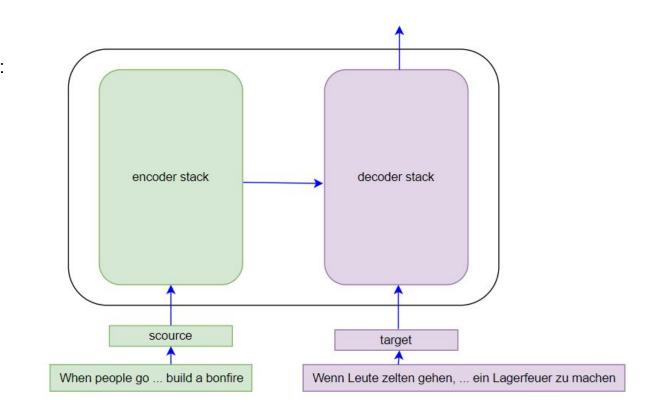


The Transformer Model

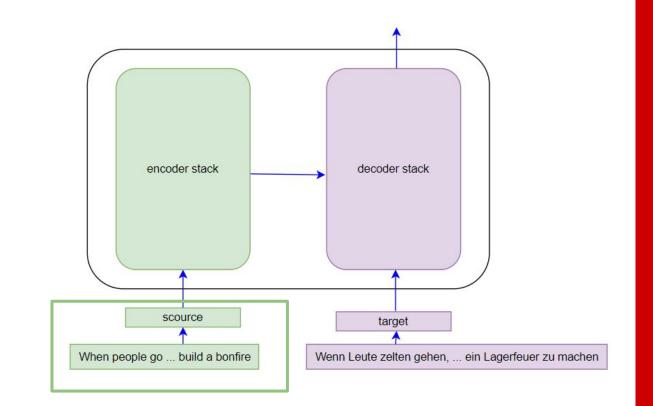


The Transformer Model

At Training Time:

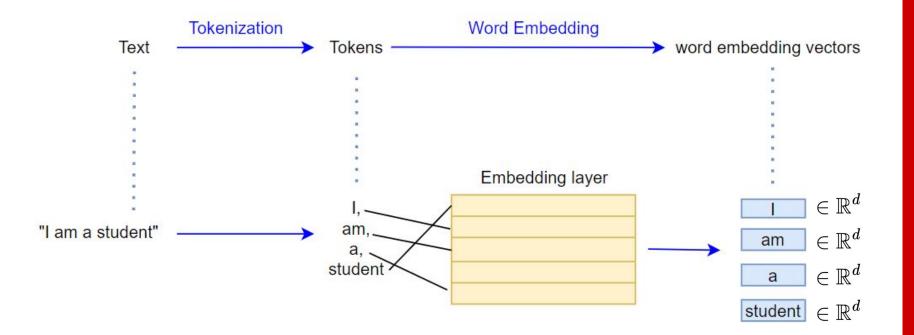


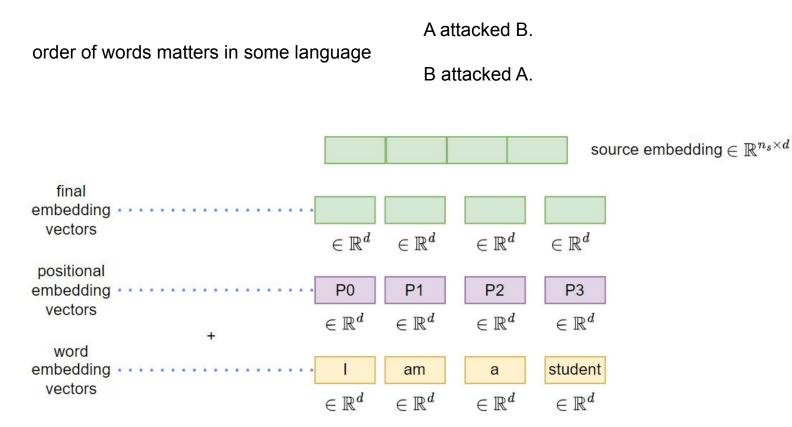
Input Embedding



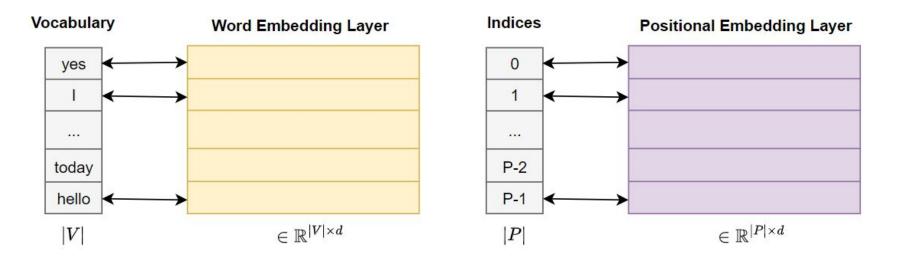
- 1. word embedding
- 2. positional embedding

Word Embedding





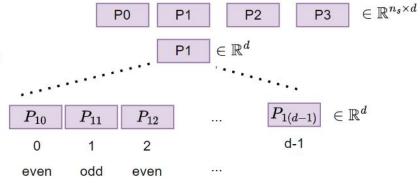
Way 1: learned



P is a pre-decoded maximum length The model cannot accept length > P, unless trimmed

Way 2: calculated

- n_s Total input sequence length
- k The k-th position in total input sequence
- j j-th number in d-dimensional vector



i Helps denote even and odd positions

$$2i$$
 $2i+1$ $2i$

Even elements

Odd elements

$$P(k,2i)=sin(rac{k}{n^{2i/d}})$$

 $P(k,2i+1)=cos(rac{k}{n^{2i/d}})$

 $n\,$ user defined large scalar, = 10,000 in paper

Even elements

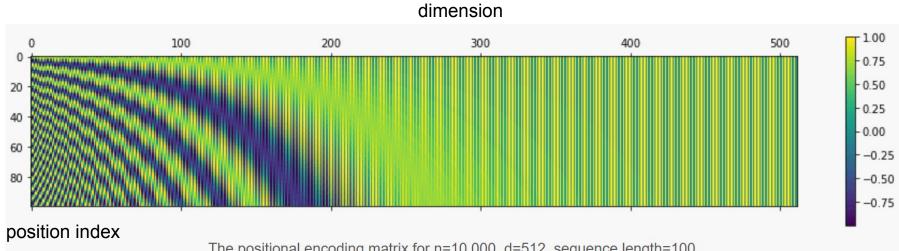
$$P(k,2i)=sin(rac{k}{n^{2i/d}})$$

n user defined large scalar, = 10,000 in paper

Odd elements

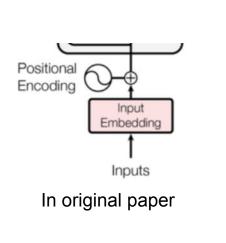
$$P(k,2i+1)=cos(rac{k}{n^{2i/d}})$$

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline \mathsf{P1} & \in \mathbb{R}^4 & \hline P_{10} & j=0, i=0 & P(k,0)=sin(1/n^{\frac{0}{4}})=sin(1)\approx 0.84 \\ \hline k=1 & \hline p_{11} & j=1, i=0 & P(k,1)=cos(1/n^{\frac{0}{4}})=cos(1)\approx 0.54 & \hline \mathsf{P1}=[0.84,0.54,0.1,1] \\ \hline n=100 & \hline P_{12} & j=2, i=1 & P(k,2)=sin(1/100^{\frac{2}{4}})=sin(1/10)\approx 0.10 & \hline P_{13} & j=3, i=1 & P(k,3)=cos(1/100^{\frac{2}{4}})=cos(1/10)\approx 1.0 & \hline \end{array}$$

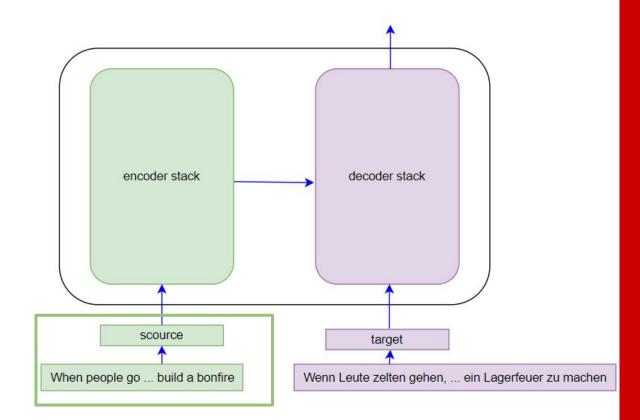


The positional encoding matrix for n=10,000, d=512, sequence length=100

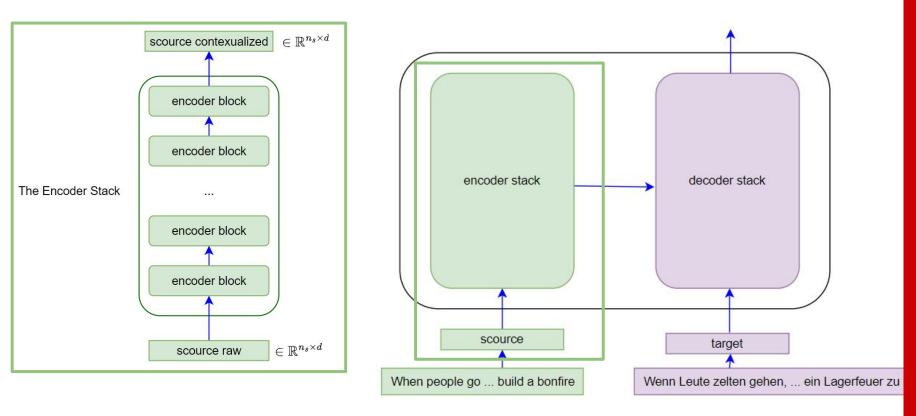
Input Embedding



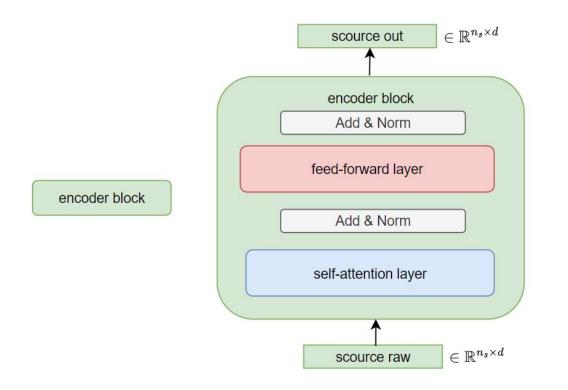
- 1. word embedding
- 2. positional embedding



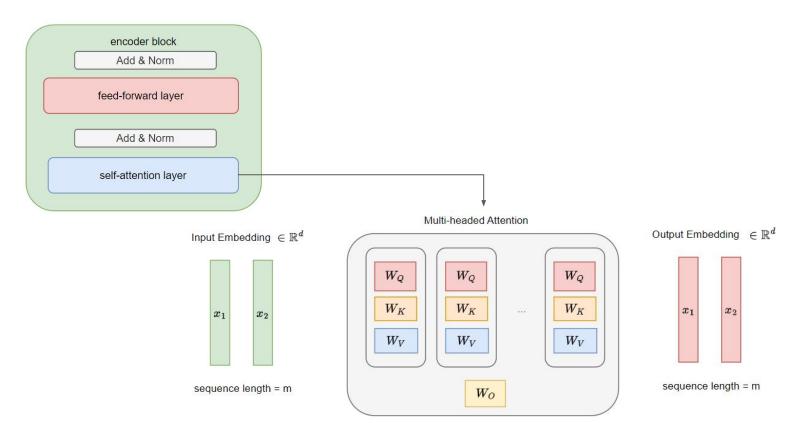
The Encoder Stack



The Encoder Block

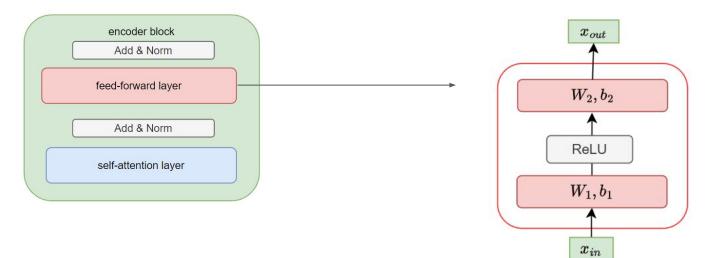


Multi-headed Attention



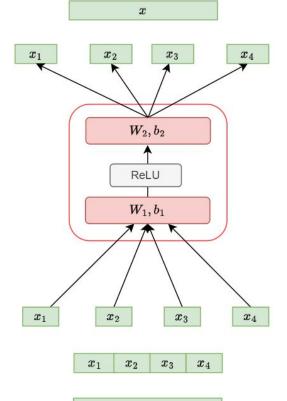
Ŵ

Position-wise Feed-forward Layer



$$x_{out} = (ReLU(x_{in}^TW_1+b_1))W_2+b_2$$

Position-wise Feed-forward Layer

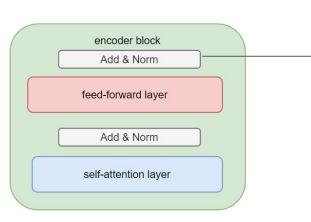


 $x_{out} = (ReLU(x_{in}^TW_1+b_1))W_2+b_2$

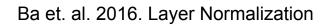
"x_in" is each individual word

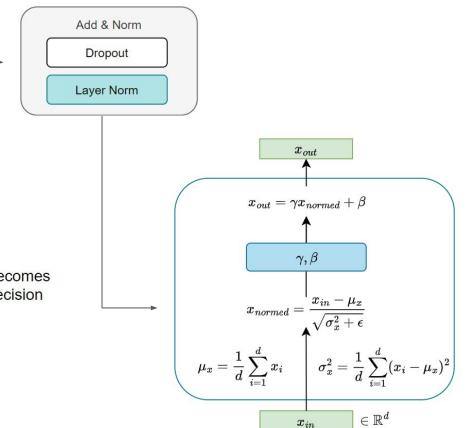
not a whole (n_s) * d sequence

Add & Norm

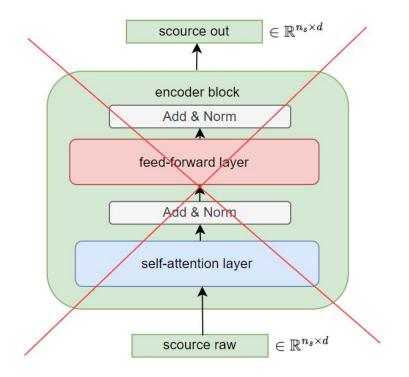


- ϵ : A small number to prevent denominator becomes too small, and underflow due to limited precision
- γ, eta : learnable parameters



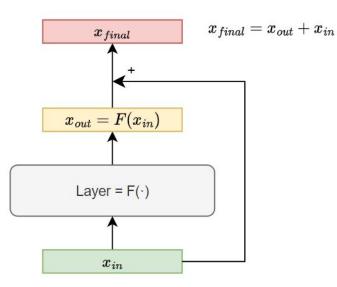


The Encoder Block



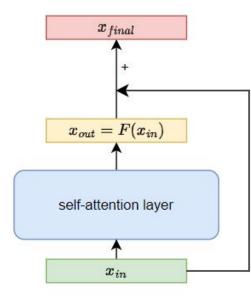
NOT simply pass through one layer after another

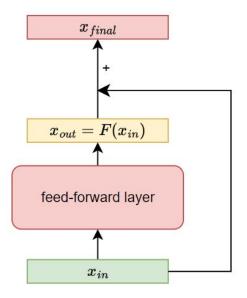
Residual Connection



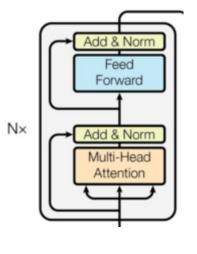
He et. al. 2015. Deep Residual Learning for Image Recognition

Residual Connection

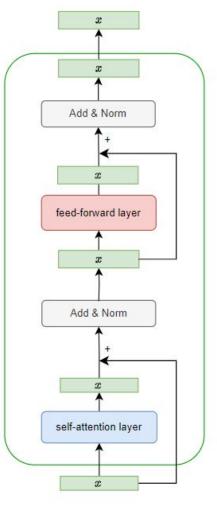




Full encoder block

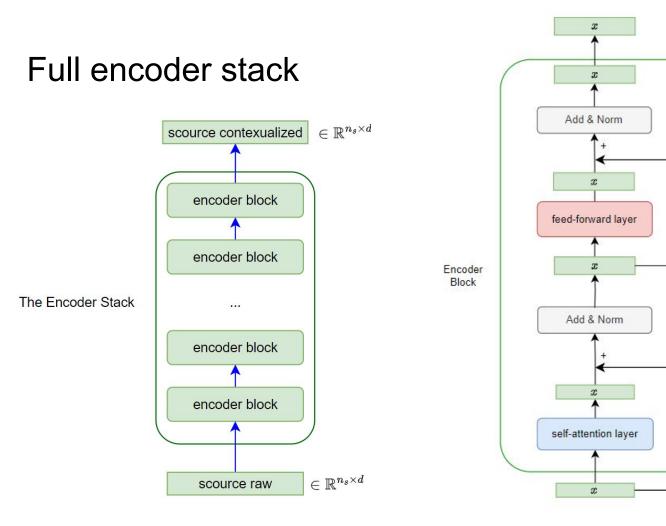


In original paper



Encoder

Block

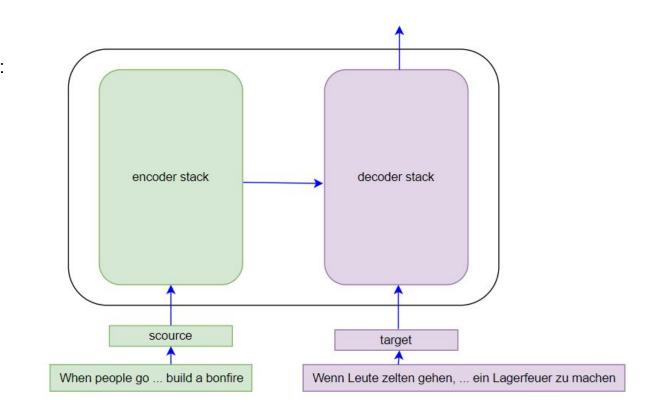


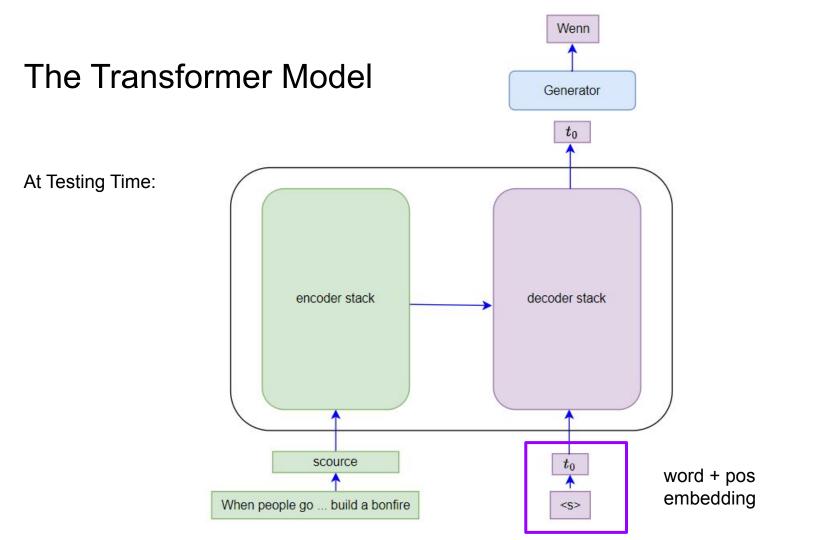
Full encoder stack

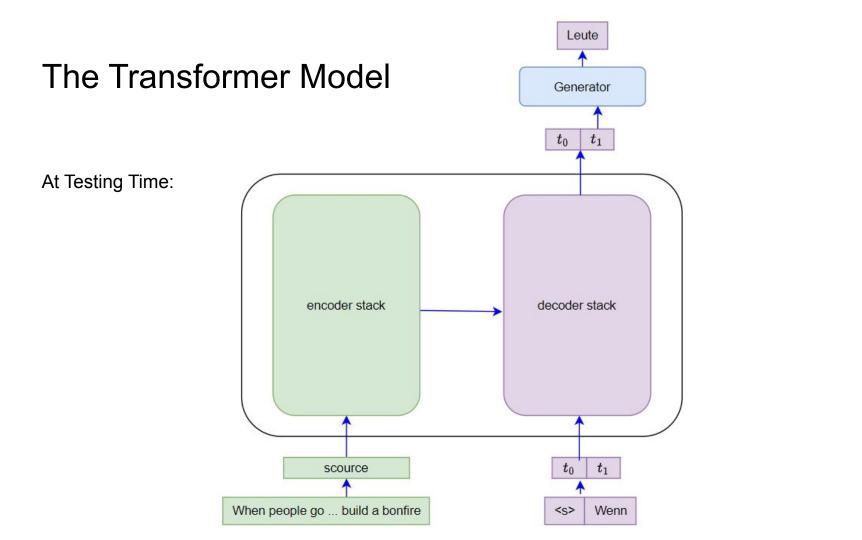


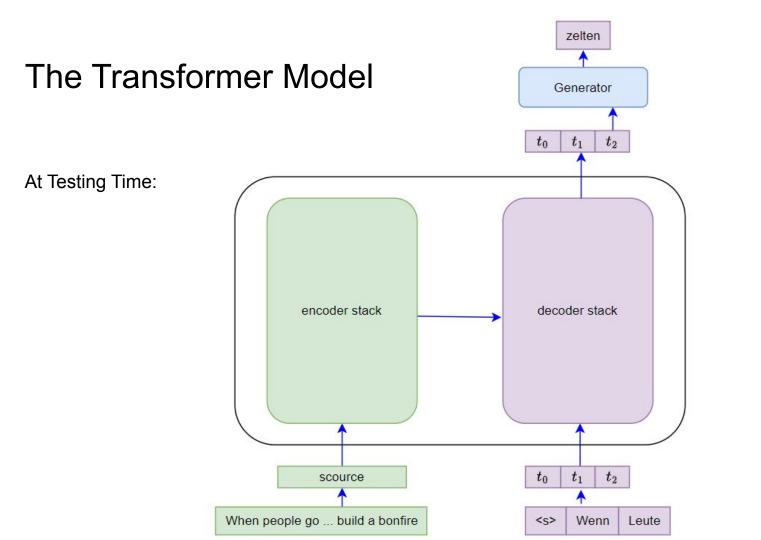
The Transformer Model

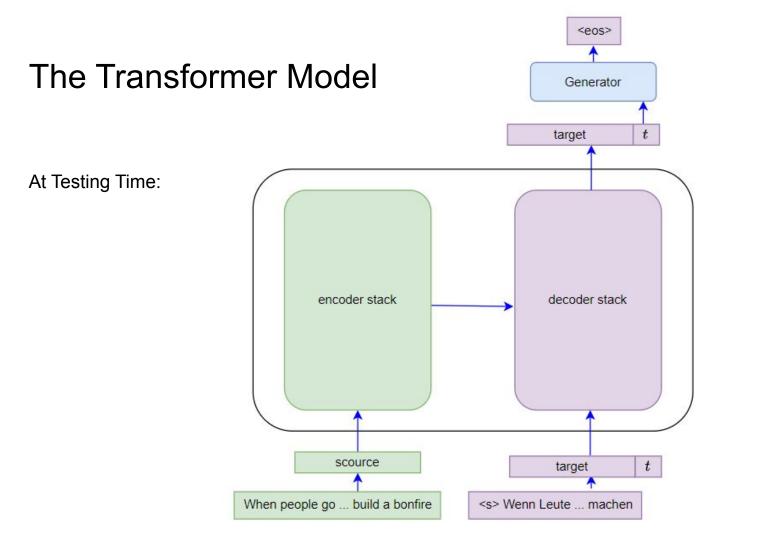
At Training Time:









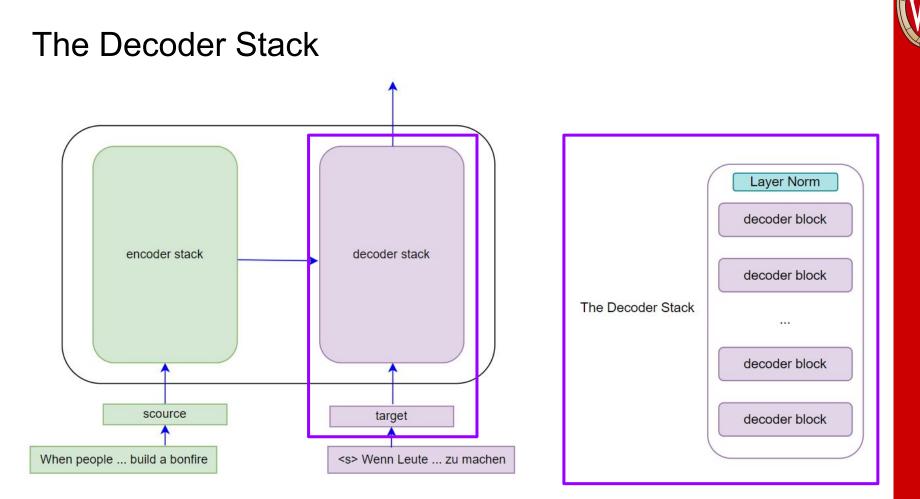


Target Input Embedding

encoder stack decoder stack scource target <s> Wenn Leute ... zu machen When people ... build a bonfire

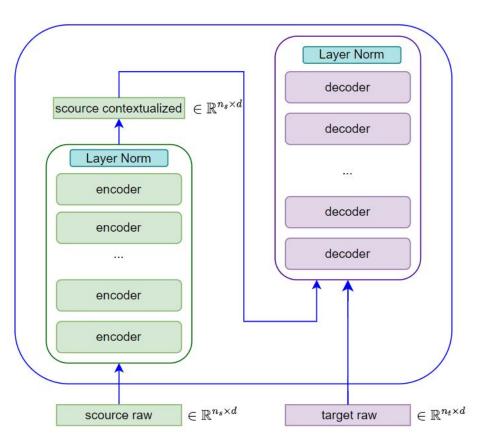
Add one special character at beginning To shift every word one position behind

- 1. word embedding
- 2. positional embedding

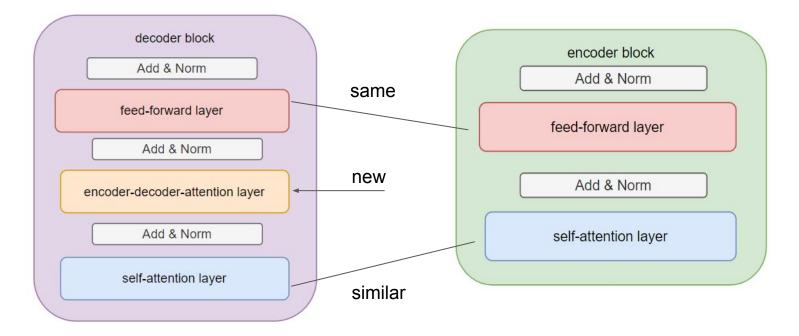


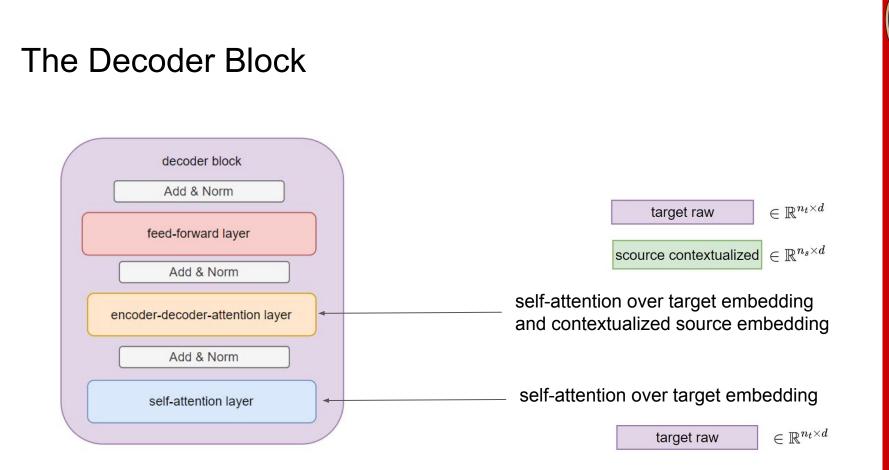
The Decoder Stack

Training Time:



The Decoder Block





The Decoder Block decoder block Add & Norm feed-forward layer Add & Norm But uses a special attention mask encoder-decoder-attention layer Add & Norm self-attention layer Multi-headed Attention Output Embedding $\in \mathbb{R}^d$ Input Embedding $\in \mathbb{R}^d$ W_Q W_Q W_Q W_K W_K W_K x_1 x_2 x_2 x_1 W_V W_V W_V sequence length = m sequence length = m target embedded Wo

Recall: use attention mask to avoid attention to [PAD] token

Good morning [PAD]

0	0	-inf
0	0	- <mark>in</mark> f
0	0	-inf

Not only [PAD] token, also can be used to mask any position in attention matrix we don't want

Every word in decoder self-attention will only attend to words before it and itself

The reason is, during test time,

when we have no ground-truth target embedding given, we will predict each word **one-by-one**, not together

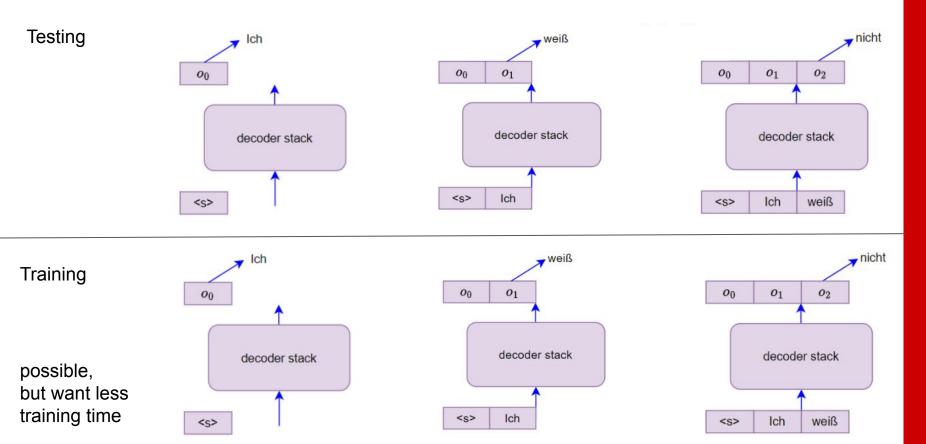
< s> \rightarrow lch < s> lch \rightarrow weiß < s> lch weiß \rightarrow nicht

Each word can only see previous words in test time So we mimic the same thing at training time

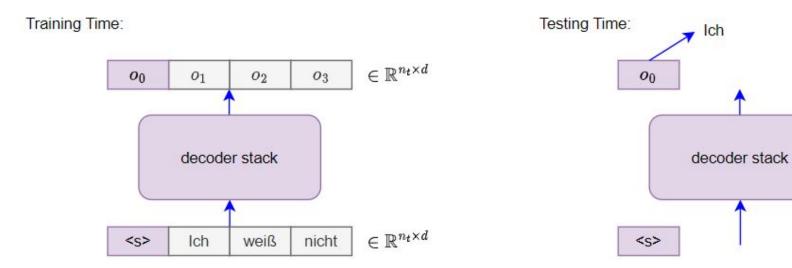
Ich	weiß	nicht
Ich	weiß	nicht

$x_1 o x_1$	$x_1 ightarrow x_2$	$x_1 o x_3$
$x_2 o x_1$	$x_2 ightarrow x_2$	$x_2 ightarrow x_3$
$x_3 o x_1$	$x_3 ightarrow x_2$	$x_3 ightarrow x_3$

green means attends, gray means masked



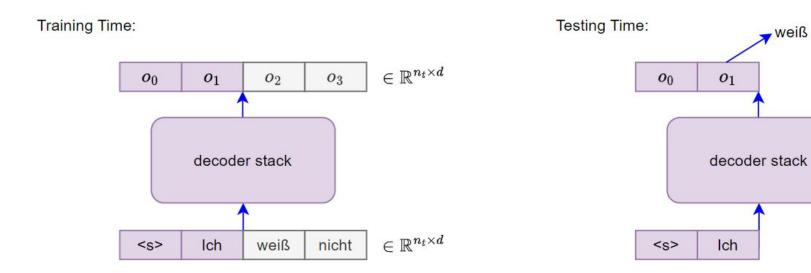
$x_1 o x_1$	$x_1 o x_2$	$x_1 o x_3$	
$x_2 o x_1$	$x_2 ightarrow x_2$	$x_2 o x_3$	
$x_3 ightarrow x_1$	$x_3 ightarrow x_2$	$x_3 ightarrow x_3$	



o0 only attends to start of sentence character

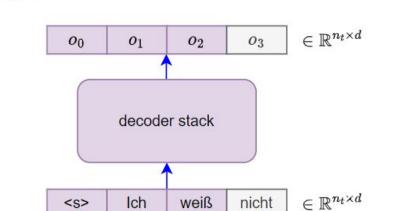
$x_1 o x_1$	$x_1 o x_2$	$x_1 ightarrow x_3$
$x_2 o x_1$	$x_2 ightarrow x_2$	$x_2 o x_3$
$x_3 o x_1$	$x_3 ightarrow x_2$	$x_3 ightarrow x_3$

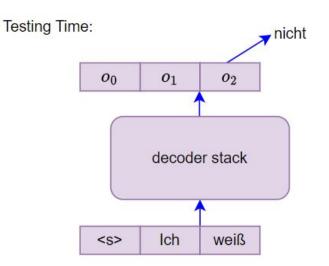
weiß



attends to precious words 01

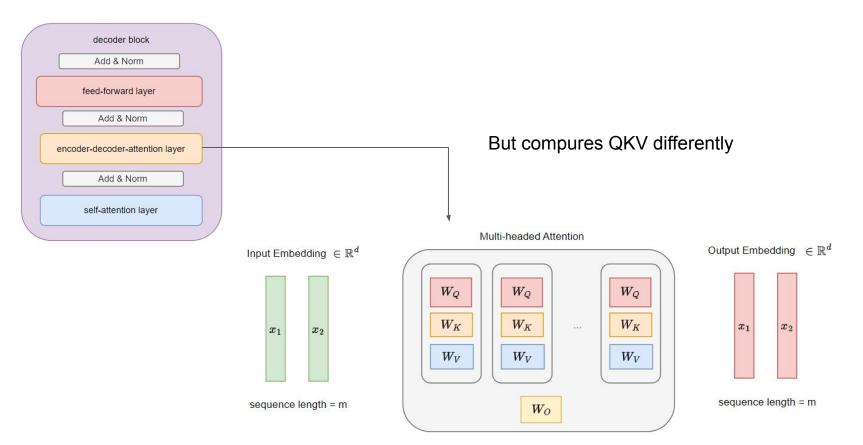
$x_1 o x_1$	$x_1 o x_2$	$x_1 ightarrow x_3$
$x_2 o x_1$	$x_2 ightarrow x_2$	$x_2 ightarrow x_3$
$x_3 o x_1$	$x_3 ightarrow x_2$	$x_3 ightarrow x_3$

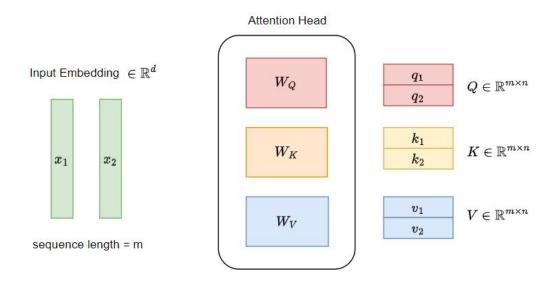




Training Time:

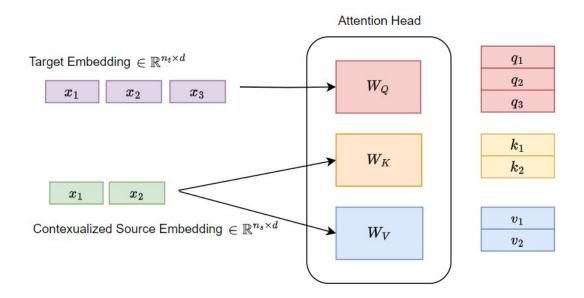
o2 attends to precious words





In encoder-self-attention, QKV are computed from source embedding

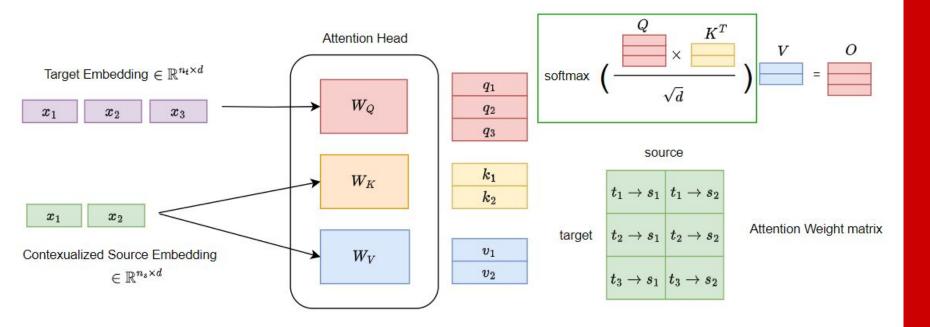
In decoder-self-attention, QKV are computed from target embedding

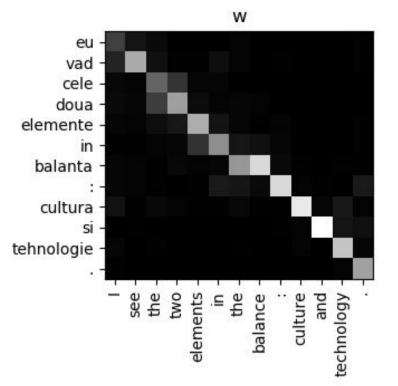


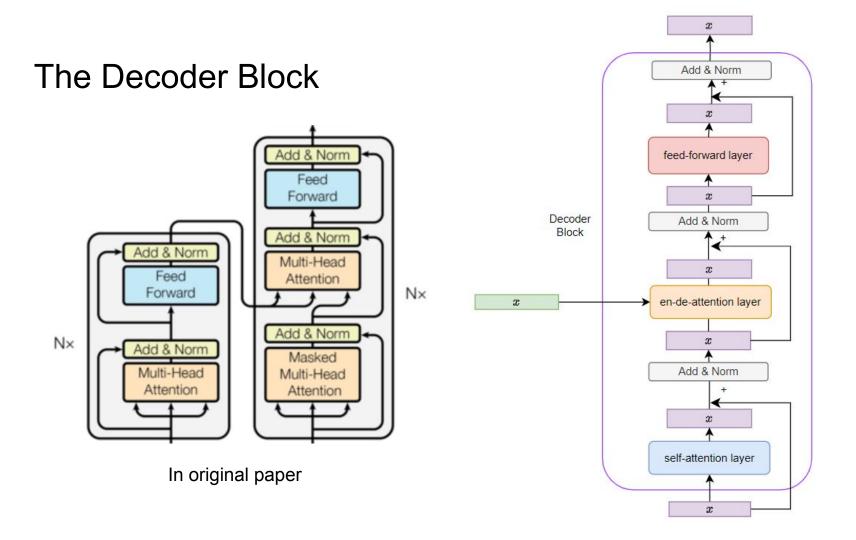
In encoder-decoder-attention,

Q is computed from target embedding

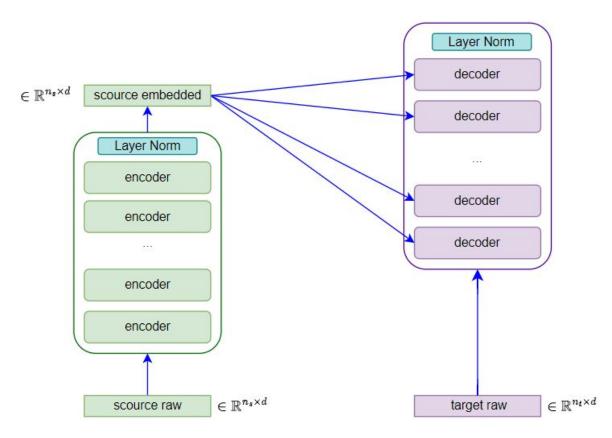
KV are computed from contextualized source embedding

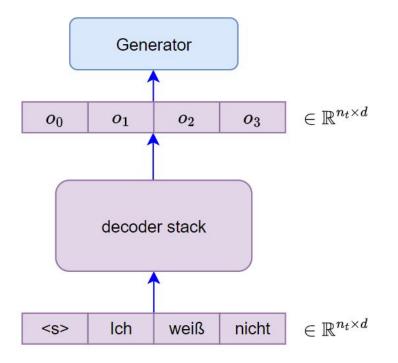


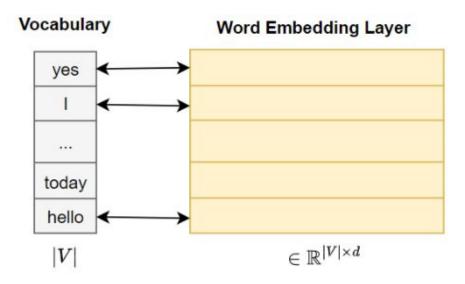




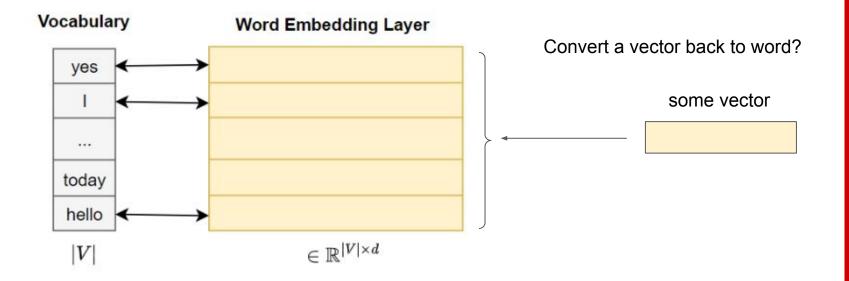
The Decoder Block

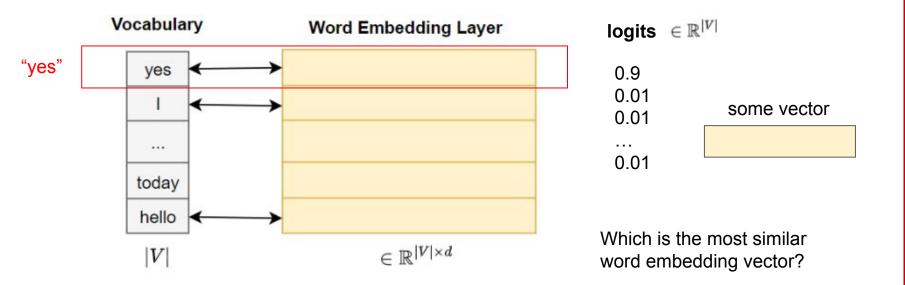




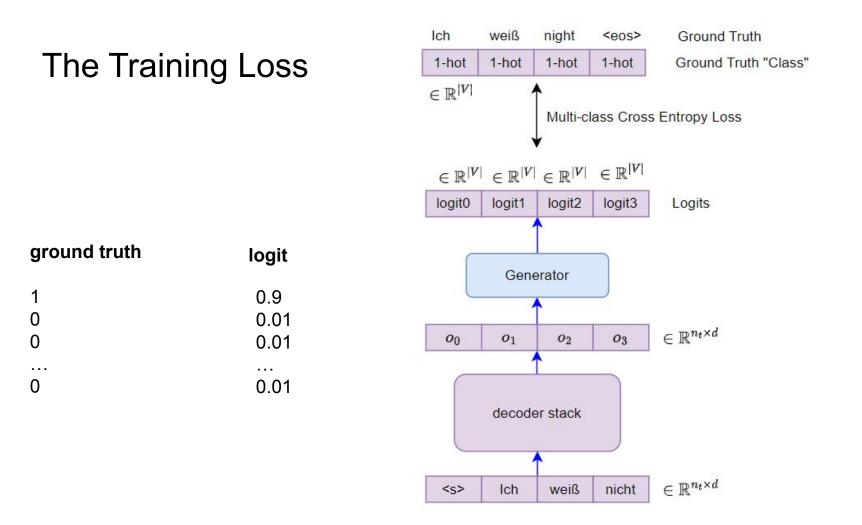


Word embedding: for a fixed word convert to a fixed embedding

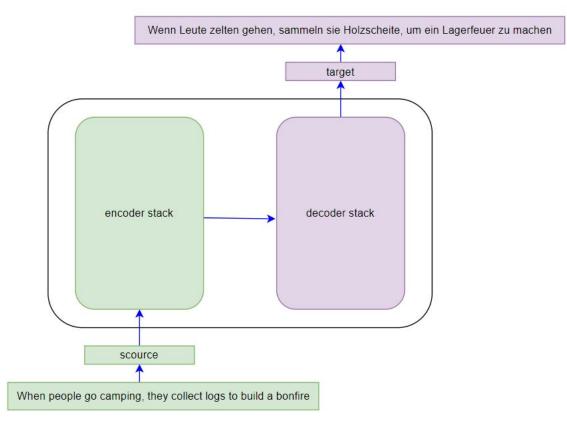




dot product with every word embedding vector do softmax over result to get logits



The Transformer Model



References

- The annotated transformer <u>http://nlp.seas.harvard.edu/annotated-transformer</u>
- A Gentle Introduction to Positional Encoding in Transformer Models, Part 1 https://machinelearningmastery.com/a-gentle-introduction-to-positional-encod-ng-in-transformer-models-part-1/#:~:text=What%20Is%20Positional%20Encod-ding%3F,item's%20position%20in%20transformer%20models.
- Database analogy modified from Dive into Deep Learning CH11.1

References

- Dzmitry Bahdanau, Kyunghyun Cho and Yoshua Bengio. 2014. Neural Machine Translation by Jointly Learning to Align and Translate. In International Conference on Learning Representations.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser and Illia Polosukhin. 2017. Attention is All you Need. In Advances in Neural Information Processing Systems. Curran Associates, Inc..
- Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. 2015. Deep Residual Learning for Image Recognition
- Jimmy Lei Ba, Jamie Ryan Kiros and Geoffrey E. Hinton. 2016. Layer Normalization