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Supervised Learning
Motivation

Given training data and label.

Discriminative: estimate P̂ tY � y |X � xu to classify.

Generative: estimate P̂ tX � x |Y � yu and Bayes rule to
classify.
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Naive Bayes
Motivation

Naive Bayes: Xj Ð Y .

P tY � 1|X1 � x1, ...,Xm � xmu
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Logistic Regression
Motivation
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Unsupervised Learning
Motivation

Supervised learning: px1, y1q , px2, y2q , ..., pxn, ynq .
Unsupervised learning: x1, x2, ..., xn .

There are a few common tasks without labels.

1 Clustering: separate instances into groups.

2 Novelty (outlier) detection: find instances that are different.

3 Dimensionality reduction: represent each instance with a lower
dimensional feature vector while maintaining key
characteristics.
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Unsupervised Learning Applications
Motivation

1 Google News

2 Google Photo

3 Image Segmentation

4 Text Processing
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Hierarchical Clustering
Description

Start with each instance as a cluster.

Merge clusters that are closest to each other.

Result in a binary tree with close clusters as children.
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Clusters
Definition

A cluster is a set of instances.

Ck � txiuni�1

A clustering is a partition of the set of instances into clusters.

C � C1,C2, ...,CK

Ck X Ck 1 � H for k 1 � k ,
K¤

k�1

Ck � txiuni�1
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Distance between Points
Definition

Usually, the distance between two instances is measured by
the Euclidean distance or L2 distance.

d pxi , xi 1q � }xi � xi 1}2 �
gffe m̧

j�1

�
xij � xi 1j

�2

Other examples include: L1 distance and L8 distance.

d1 pxi , xi 1q � }xi � xi 1}1 �
m̧

j�1

��xij � xi 1j
��

d8 pxi , xi 1q � }xi � xi 1}8 � max
j�1,2,...,m

 ��xij � xi 1j
��(
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Single Linkage Distance
Definition

Usually, the distance between two clusters is measured by the
single-linkage distance.

d pCk ,Ck 1q � min td pxi , xi 1q : xi P Ck , xi 1 P Ck 1u

It is the shortest distance from any instance in one cluster to
any instance in the other cluster.
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Complete Linkage Distance
Definition

Another measure is complete-linkage distance,

d pCk ,Ck 1q � max td pxi , xi 1q : xi P Ck , xi 1 P Ck 1u

It is the longest distance from any instance in one cluster to
any instance in the other cluster.
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Average Linkage Distance Diagram
Definition

Another measure is average-linkage distance.

d pCk ,Ck 1q � 1

|Ck | |Ck 1 |
¸

xiPCk ,xi1PCk1

d pxi , xi 1q

It is the average distance from any instance in one cluster to
any instance in the other cluster.



13/27

Unsupervised Learning Hierarchical Clustering K Means Clustering

Hierarchical Clustering
Algorithm

Input: instances: txiuni�1, the number of clusters K , and a
distance function d .

Output: a list of clusters C � C1,C2, ...,CK .

Initialize for t � 0.

C p0q � C
p0q
1 , ...,C

p0q
n , where C

p0q
k � txku , k � 1, 2, ..., n

Loop for t � 1, 2, ..., n � k � 1.

pk�1 , k�2 q � argmin
k1,k2

d
�
C
pt�1q
k1

,C
pt�1q
k2

	
C ptq �

�
C
pt�1q
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Y C
pt�1q
k�2

	
,C

pt�1q
1 , ... no k�1 , k

�
2 ...,C

pt�1q
n
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Number of Clusters
Discussion

K can be chosen using prior knowledge about X .

The algorithm can stop merging as soon as all the
between-cluster distances are larger than some fixed R.

The binary tree generated in the process is often called
dendrogram, or taxonomy, or a hierarchy of data points.

An example of a dendrogram is the tree of life in biology.
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K Means Clustering
Description

This is not K Nearest Neighbor.

Start with random cluster centers.

Assign each point to its closest center.

Update all cluster centers as the center of its points.
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Center
Definition

The center is the average of the instances in the cluster,

ck � 1

|Ck |
¸
xPCk

x
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Distortion
Distortion

Distortion for a point is the distance from the point to its
cluster center.

Total distortion is the sum of distortion for all points.

DK �
ņ

i�1

d
�
xi , ck�pxi q pxi q

�
k� pxq � argmin

k�1,2,...K
d px , ckq



18/27

Unsupervised Learning Hierarchical Clustering K Means Clustering

Objective Function
Definition

When using Euclidean distance, sometimes total distortion is
defined as sum of squared distances.

DK �
ņ

i�1

d2
�
xi , ck�pxi q pxi q

�2

This algorithm stop in finite steps.

This algorithm is trying to minimize the total distortion but
fails.
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Gradient Descent
Definition

When d is the Euclidean distance. K Means algorithm is the
gradient descent when distortion is the objective (cost)
function.

B
Bck

Ķ

k�1

¸
xPCk

}x � ck}22 � 0

ñ �2
¸
xPCk

px � ckq � 0

ñ ck � 1

|Ck |
¸
xPCk

x



20/27

Unsupervised Learning Hierarchical Clustering K Means Clustering

K Means Clustering
Algorithm

Input: instances: txiuni�1, the number of clusters K , and a
distance function d .

Output: a list of clusters C � C1,C2, ...,CK .

Initialize t � 0.

c
p0q
k � K random points

Loop until cptq � cpt�1q.

C
pt�1q
k �

#
x : k � argmin

k 1P1,2,...,K
d
�
x , c

pt�1q
k

	+

c
ptq
k � 1���C pt�1q

k

���
¸

xPC
pt�1q
k

x
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Number of Clusters
Discussion

There are a few ways to pick the number of clusters K .

1 K can be chosen using prior knowledge about X .

2 K can be the one that minimizes distortion? No, when
K � n, distortion � 0.

3 K can be the one that minimizes distortion + regularizer.

K � � argmin
k

pDk � λ �m � k � log nq

λ is a fixed constant chosen arbitrarily.
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Initial Clusters
Discussion

There are a few ways to initialize the clusters.

1 K uniform random points in txiuni�1.

2 1 uniform random point in txiuni�1 as c
p0q
1 , then find the

farthest point in txiuni�1 from c
p0q
1 as c

p0q
2 , and find the

farthest point in txiuni�1 from the closer of c
p0q
1 and c

p0q
2 as

c
p0q
3 , and repeat this K times.
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Gaussian Mixture Model
Discussion

In K means, each instance belong to one cluster with
certainty.

One continuous version is called the Gaussian mixture model:
each instance belongs to one of the clusters with a positive
probability.

The model can be trained using Expectation Maximization
Algorithm (EM Algorithm).
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EM Algorithm, Part I
Discussion

The means µk and variances σ2
k for each cluster need to be

trained. The mixing probability πk also needs to be trained.�
µ1, σ

2
1, π1

�
,
�
µ2, σ

2
2, π2

�
, ...,

�
µK , σ

2
K , πK

�

Initialize by random guesses of clusters means and variances.
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EM Algorithm, Part II
Discussion

Expectation Step. Compute responsibilities for i � 1, 2, ..., n
and k � 1, 2, ...,K .

γ̂i ,k � π̂kφk pxi q¸
k 1�1,2,...,K

π̂k 1φk 1 pxi q

φk pxq � 1?
2πσ̂k

exp

�
�px � µ̂kq2

2σ̂2
k

�
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EM Algorithm, Part III
Discussion

Maximization Step. Compute means and variances for each
k � 1, 2, ...,K .

µ̂k �

ņ

i�1

γ̂i ,kxi

ņ

i�1

γ̂i

, and σ̂2
k �

ņ

i�1

γ̂i ,k pxi � µ̂kq2

ņ

i�1

γ̂i

π̂k � 1

n

ņ

i�1

γ̂i ,k

Repeat until convergent.
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Summary
Discussion

Unsupervised learning:

1 Clustering: Hierachical Ñ Start with singleton clusters Ñ
Merge closest (single, complete linkage) clusters Ñ Repeat.

2 Clustering: K -Means Ñ Start with random centers Ñ Find
closest center to every point Ñ Update centers Ñ Repeat.

3 Dimensionality Reduction: Principal Component Analysis.
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