CS540 Introduction to Artificial Intelligence Lecture 13

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

$$
\text { July 17, } 2023
$$

High Dimensional Data

Motivation

- High dimensional data are training set with a lot of features.
(1) Document classification.
(2) MEG brain imaging.
(3) Handwritten digits (or images in general).

Low Dimension Representation

Motivation

- Unsupervised learning techniques are used to find low dimensional representation.
(1) Visualization.
(2) Efficient storage.
(3) Better generalization.
(c) Noise removal.

Dimension Reduction

Description

- Rotate the axes so that they capture the directions of the greatest variability of data.
- The new axes (orthogonal directions) are principal components.

Principal Component Analysis

Description

- Find the direction of the greatest variability in data, call it u_{1}.
- Find the next direction orthogonal to u_{1} of the greatest variability, call it u_{2}.
- Repeat until there are $u_{1}, u_{2}, \ldots, u_{K}$.

Orthogonal Directions

Definition

- In Euclidean space (L_{2} norm), a unit vector u_{k} has length 1 .

$$
\left\|u_{k}\right\|_{2}=u_{k}^{T} u_{k}=1
$$

- Two vectors $u_{k}, u_{k^{\prime}}$ are orthogonal (or uncorrelated) if the dot product is 0 .

$$
u_{k} \cdot u_{k^{\prime}}=u_{k}^{T} u_{k^{\prime}}=0
$$

Projection

Definition

- The projection of x_{i} onto a unit vector u_{k} is the vector in the direction of u_{k} that is the closest to x_{i}.

$$
\operatorname{proj} u_{k} x_{i}=\left(\frac{u_{k}^{T} x_{i}}{u_{k}^{T} u_{k}}\right) u_{k}=u_{k}^{T} x_{i} u_{k}
$$

- The length of the projection of x_{i} onto a unit vector u_{k} is $u_{k}^{T} x_{i}$.

$$
\left\|\operatorname{proj}_{u_{k}} x_{i}\right\|_{2}=u_{k}^{T} x_{i}
$$

Variance

Definition

- The sample variance of a data set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is the sum of the squared distance from the mean.

$$
\begin{aligned}
X & =\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right] \\
\hat{\mu} & =\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
\hat{\Sigma} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)\left(x_{i}-\hat{\mu}\right)^{T}
\end{aligned}
$$

Normalization

Definition

- Normalize the data by subtracting the mean, then the variance expression can be simplified.

$$
\begin{aligned}
x_{i} & =x_{i}-\mu \\
\hat{\Sigma} & =\frac{1}{n-1} \sum_{i=1}^{n} x_{i} x_{i}^{T}=\frac{1}{n-1} X^{T} X
\end{aligned}
$$

Covariance Matrix

Definition

- $\hat{\Sigma}$ is an $m \times m$ matrix and it is usually called the sample covariance matrix. The diagonal elements are variances in each dimension.

$$
\hat{\sigma}_{j}^{2}=\hat{\Sigma}_{j j}=\frac{1}{n-1} \sum_{i=1}^{n} x_{i j}^{2}
$$

Projected Variance

Definition

- Note that $x_{i j}=e_{j}^{T} x_{i}$, where e_{j} is the vector of 0 except it is 1 in coordinate j.

$$
\begin{aligned}
\hat{\sigma}_{j}^{2} & =e_{j}^{T} \hat{\Sigma} e_{j}=\frac{1}{n-1} e_{j}^{T} X^{T} X e_{j} \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(e_{j}^{T} x_{i}\right)^{2}
\end{aligned}
$$

- The variance of the normalized x_{i} projected onto direction u_{k} has a similar expression.

$$
\begin{aligned}
u_{k}^{T} \hat{\Sigma} u_{k} & =\frac{1}{n-1} u_{k}^{T} X^{T} X u_{k} \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(u_{k}^{T} x_{i}\right)^{2}
\end{aligned}
$$

Maximum Variance Directions

Definition

- The goal is to find the direction that maximizes the projected variance.

$$
\begin{aligned}
& \max _{u_{k}} u_{k}^{T} \hat{\Sigma} u_{k} \text { such that } u_{k}^{T} u_{k}=1 \\
& \Rightarrow \max _{u_{k}} u_{k}^{T} \hat{\Sigma} u_{k}-\lambda u_{k}^{T} u_{k} \\
& \Rightarrow \hat{\Sigma} u_{k}=\lambda u_{k}
\end{aligned}
$$

Eigenvalue

Definition

- The λ represents the projected variance.

$$
u_{k}^{T} \hat{\Sigma} u_{k}=u_{k}^{T} \lambda u_{k}=\lambda
$$

- The larger the variance, the larger the variability in direction u_{k}. There are m eigenvalues for a symmetric positive semidefinite matrix (for example, $X^{T} X$ is always symmetric PSD). Order the eigenvectors u_{k} by the size of their corresponding eigenvalues λ_{k}.

$$
\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{m}
$$

Eigenvalue Algorithm

Definition

- Solving eigenvalue using the definition (characteristic polynomial) is computationally inefficient.

$$
\left(\hat{\Sigma}-\lambda_{k} I\right) u_{k}=0 \Rightarrow \operatorname{det}\left(\hat{\Sigma}-\lambda_{k} I\right)=0
$$

- There are many fast eigenvalue algorithms that computes the spectral (eigen) decomposition for real symmetric matrices. Columns of Q are unit eigenvectors and diagonal elements of D are eigenvalues.

$$
\begin{aligned}
\hat{\Sigma} & =P D P^{-1}, D \text { is diagonal } \\
& =Q D Q^{T}, \text { if } Q \text { is orthogonal, i.e. } Q^{T} Q=1
\end{aligned}
$$

Principal Component Analysis

Algorithm

- Input: instances: $\left\{x_{i}\right\}_{i=1}^{n}$, the number of dimensions after reduction $K<m$.
- Output: K principal components.
- Find the largest K eigenvalues $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{K}$.
- Return the corresponding unit orthogonal eigenvectors $u_{1}, u_{2} \ldots u_{K}$.

Number of Dimensions

Discussion

- There are a few ways to choose the number of principal components K.
- K can be selected given prior knowledge or requirement.
- K can be the number of non-zero eigenvalues.
- K can be the number of eigenvalues that are large (larger than some threshold).

Reduced Feature Space

Discussion

- The original feature space is m dimensional.

$$
\left(x_{i 1}, x_{i 2}, \ldots, x_{i m}\right)^{T}
$$

- The new feature space is K dimensional.

$$
\left(u_{1}^{T} x_{i}, u_{2}^{T} x_{i}, \ldots, u_{K}^{T} x_{i}\right)^{T}
$$

- Other supervised learning algorithms can be applied on the new features.

Reconstruction Error

Discussion

- Reconstruction error is the squared error (distance) between the original data and its projection onto u_{k}.

$$
\left\|x_{i}-\left(u_{k}^{T} x_{i}\right) u_{k}\right\|^{2}
$$

- Finding the variance maximizing directions is the same as finding the reconstruction error minimizing directions.

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}-\left(u_{k}^{T} x_{i}\right) u_{k}\right\|^{2}
$$

Eigenface

Discussion

- Eigenfaces are eigenvectors of face images (pixel intensities or HOG features).
- Every face can be written as a linear combination of eigenfaces. The coefficients determine specific faces.

$$
x_{i}=\sum_{k=1}^{m}\left(u_{k}^{T} x_{i}\right) u_{k} \approx \sum_{k=1}^{K}\left(u_{k}^{T} x_{i}\right) u_{k}
$$

- Eigenfaces and SVM can be combined to detect or recognize faces.

Autoencoder

Discussion

- A multi-layer neural network with the same input and output $y_{i}=x_{i}$ is called an autoencoder.
- The hidden layers have fewer units than the dimension of the input m.
- The hidden units form an encoding of the input with reduced dimensionality.

Kernel PCA

Discussion

- A kernel can be applied before finding the principal components.

$$
\hat{\Sigma}=\frac{1}{n-1} \sum_{i=1}^{n} \varphi\left(x_{i}\right) \varphi\left(x_{i}\right)^{T}
$$

- The principal components can be found without explicitly computing $\varphi\left(x_{i}\right)$, similar to the kernel trick for support vector machines.
- Kernel PCA is a non-linear dimensionality reduction method.

T-Distributed Stochastic Neighbor Embedding

Discussion

- t-distributed stochastic neighbor embedding is another non-linear dimensionality reduction method used mainly for visualization.
- Points in high dimensional spaces are embedded in 2 or 3-dimensional spaces to preserve the distance (neighbor) relationship between points.

Summary

Description

- Unsupervised learning:
(1) Clustering: Hierachical.
(2) Clustering: K-Means.
(3) Dimensionality Reduction: Principal Component Analysis \rightarrow Find varinaces \rightarrow Find directions (principal components) with the largest projected variances (eigenvalues) \rightarrow Find projection onto the principal direction (original points can be reconstructed).

Temporary page!

ATEX was unable to guess the total number of pages correctly. there was some unprocessed data that should have been added the final page this extra page has been added to receive it. If you rerun the document (without altering it) this surplus pag will go away, because ${ }^{L} T_{E} X$ now knows how many pages to exp for this document.

