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Reinforcement Learning
Motivation

@ An agent interacts with an environment and receives a reward
based on the state of the environment and its action.

@ The goal of reinforcement learning is to maximize the
cumulative reward by learning the optimal actions in every
state.
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Applications of Reinforcement Learning

Motivation

@ Robot control. (e.g. Google Al Robotics)

@ Autonomous driving (e.g. Tesla Electric Cars)
@ Large language model (e.g. ChatGPT)

e Game playing (e.g. AlphaGO)
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Simplest Problem

Motivation

@ A simple reinforcement problem with only one state is called
the multi-armed bandit problem.
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Multi-Armed Bandit Definition

Definition

There is a set of actions A = {1,2,..., K}.

The reward from action k is given by r : A — R, where
r (k) ~ D (ug), pk is the mean reward from action k € A.

Time horizon T.

The agent's objective is,
T
max Z re(at) .

atGA —1
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Regret minimization vs Best Action Identification

Definition

@ Another way to write down the agent's objective is,
1 T
min < max fx — — r: (a .
ateA{keA'uk T; t t)}

@ For theoretical analysis, sometimes (i, is used in place of
re (at).

@ An algorithm is no-regret if the as T — o0, the regret
approaches 0 with probability 1.
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Applications of Multi-Armed Bandit

Motivation

@ Multi-armed bandits.
@ Clinical trials.

@ Stock selection.
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Exploration vs Exploitation

Definition

@ Epsilon-first strategy: - T rounds of pure exploration and use
the empirically best action in the remaining (1 —¢) - T rounds.

@ Epsilon-greedy strategy: the empirically best action is always
used with probability 1 — ¢, and use a random action with
probability €, where € could be decreasing over time.
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Empirically Best Action

Definition

@ Best action at round T can be the action with the highest
average:

argmax [y,
ke A

T T
. 1
where iy = - Z re (at) Lya,—ky and ny = Z Tia,—k}-
t=1 t=1
@ Best action at round T can also be the action with the
highest upper confidence bound:

2log (T
argmax fix + ¢ L().
ke A s
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Upper Confidence Bound

Definition

@ The algorithm with € = 0 and the best action chosen
according to the upper confidence bound is called the UCB1
Algorithm.

@ UCB1 uses the principle of optimism under uncertainty and

2log (T)

Nk

i +c is an optimistic guess of the pu.

2log (T)

@ The expression computes the confidence width

Ny
based on Hoeffding's inequality.
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UCB1 Algorithm

Algorithm

Input: K arms, T periods, constant parameter c.
Output: a list of actions {at}thl

For t =1,2,...,K, pull each arm once, say a; = k, and
initialize fis, = ry.

For t > K, pull the arm

log (T
ar = argmax,e 4 flk + € <2 o8 ( )> and update
s
=n —l—land/fL’:#(ﬂn—i-r)
ar at at n.. + 1 at''at at/-

at

n
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Adversarial Bandit and EXP3

Discussion

o If the environment is adversarial, for example, the rewards are
chosen by another agent, then a deterministic algorithm would
fail. An example of a stochastic algorithm is the EXP3
algorithm: Exponential weight algorithm for Exploration and
Exploitation.

@ It keeps track of a weight vector and pull arms randomly
according the weights. The weights are updated based on the
rewards.
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EXP3 Algorithm

Discussion

@ Input: K arms, T periods, constant ~.
@ Output: a list of actions {at}z-zl
@ Initialize wy =1 for k=1,2,..., K.
@ In period t, randomly select action a; = k with probability
Yla;
pr=(1—7) M 47 and update w) = WatepatK.

K

K
> e
k=1



	Reinforcement Learning
	Main

	Multi-Armed Bandit
	Main

	Exploration vs Exploitation
	Main


