CS540 Introduction to Artificial Intelligence Lecture 20

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

July 27, 2023

Summary

Discussion

- Search:
- Uninformed.
- 2 Informed.
- Search.
- Adversarial Search: Sequential move games.
- Adversarial Search: Simultaneous move games.

Game Tree

- The initial state is the beginning of the game.
- There are no goal states, but there are multiple terminal states in which the game ends.
- Each successor of a state represents a feasible action (or a move) in the game.
- The search problem is to find the terminal state with the lowest cost (or usually the highest reward).

Adversarial Search

Motivation

- The main difference between finding solutions of games and standard search problems or local search problems is that part of the search is performed by an opponent adversarially.
- Usually, the opponent wants to maximize the cost or minimize the reward from the search. This type of search problems is called adversarial search.
- In game theory, the solution of a game is called an equilibrium. It is a path in which both players do not want to change actions.

Backward Induction

Motivation

- Games are usually solved backward starting from the terminal states.
- Each player chooses the best action (successor) given the (already solved) optimal actions of all players in the subtrees (called subgames).

Zero-Sum Games

Motivation

- If the sum of the reward or cost over all players at each terminal state is 0, the game is called a zero-sum game.
- Usually, for games with one winner: the reward for winning and the cost of losing are both 1. If the game ends with a tie, both players get 0.

Minimax Algorithm Description

• Use DFS on the game tree.

Minimax Algorithm

Algorithm

- Input: a game tree (V, E, c), and the current state s.
- Output: the value of the game at s.
- If s is a terminal state, return c(s).
- If the player is MAX, return the maximum value over all successors.

$$\alpha(s) = \max_{s' \in s'(s)} \beta(s')$$

 If the player is MIN, return the minimum value over all successors.

$$\beta\left(s\right) = \min_{s' \in s'\left(s\right)} \alpha\left(s'\right)$$

Backtracking

Discussion

 The optimal actions (solution paths) can be found by backtracking from all terminal states as in DFS.

$$\begin{split} s^{\star}\left(s\right) &= \operatorname*{argmax}_{s' \in s'\left(s\right)} \beta\left(s'\right) \text{ for MAX} \\ s^{\star}\left(s\right) &= \operatorname*{argmin}_{s' \in s'\left(s\right)} \alpha\left(s'\right) \text{ for MIN} \end{split}$$

Minimax Performance

Discussion

• The time and space complexity is the same as DFS. Note that D = d is the maximum depth of the terminal states.

$$T = 1 + b + b^{2} + ... + b^{d}$$

 $S = (b-1) \cdot d$

Non-deterministic Game

Discussion

- For non-deterministic games in which chance can make a move (dice roll or coin flip), use expected reward or cost instead.
- The algorithm is also called expectiminimax.

Pruning Motivation

- Time complexity is a problem because the computer usually has a limited amount of time to "think" and make a move.
- It is possible to reduce the time complexity by removing the branches that will not lead the current player to win. It is called the Alpha-Beta pruning.

Alpha Beta Pruning Description

- During DFS, keep track of both α and β for each vertex.
- Prune the subtree with $\alpha \geqslant \beta$.

Algorithm

- Input: a game tree (V, E, c), and the current state s.
- Output: the value of the game at s.
- If s is a terminal state, return c(s).

Alpha Beta Pruning Algorithm, Part II

 If the player is MAX, return the maximum value over all successors.

$$\alpha(s) = \max_{s' \in s'(s)} \beta(s')$$
$$\beta(s) = \beta(\text{ parent } (s))$$

- Stop and return β if $\alpha \geqslant \beta$.
- If the player is MIN, return the minimum value over all successors.

$$\beta\left(s\right) = \min_{s' \in s'\left(s\right)} \alpha\left(s'\right)$$
$$\alpha\left(s\right) = \alpha\left(\text{ parent } \left(s\right)\right)$$

• Stop and return α if $\alpha \geqslant \beta$.

Alpha Beta Performance

Discussion

- In the best case, the best action of each player is the leftmost child.
- In the worst case, Alpha Beta is the same as minimax.

Static Evaluation Function

- A static board evaluation function is a heuristics to estimate the value of non-terminal states.
- It should reflect the player's chances of winning from that vertex.
- It should be easy to compute from the board configuration.

Evaluation Function Properties Definition

- If the SBE for one player is x, then the SBE for the other player should be -x.
- The SBE should agree with the cost or reward at terminal vertices.

- For Chess, an example of an evaluation function can be a linear combination of the following variables.
- Material.
- Mobility.
- King safety.
- Center control.
- These are called the features of the board.

Iterative Deepening Search

Discussion

- IDS could be used with SBE.
- In iteration *d*, the depth is limited to *d*, and the SBE of the non-terminal vertices are used as their cost or reward.

Non Linear Evaluation Function

- The SBE can be estimated given the features using a neural network.
- The features are constructed using domain knowledge, or a possibly a convolutional neural network.
- The training data are obtained from games between professional players.

Monte Carlo Tree Search

- Simulate random games by selecting random moves for both players.
- Exploitation by keeping track of average win rate for each successor from previous searches and picking the successors that lead to more wins.
- Exploration by allowing random choices of unvisited successors.

Monte Carlo Tree Search Diagram Discussion

Upper Confidence Bound

Discussion

 Combine exploitation and exploration by picking successors using upper confidence bound for tree.

$$\frac{w_s}{n_s} + c\sqrt{\frac{\log t}{n_s}}$$

- w_s is the number of wins after successor s, and n_s the number of simulations after successor s, and t is the total number of simulations.
- Similar to the UCB algorithm for MAB.

Alpha GO Example

- MCTS with $> 10^5$ play-outs.
- Convolutional neural network to compute SBE.

Summary Discussion

- Adversarial Search:
- **1** Sequential Move Games: Minimax \rightarrow DFS on the game tree.
- ② Sequential Move Games: Alpha-Beta Pruning \rightarrow DFS to keep track α and $\beta \rightarrow$ prune the subtree with $\alpha \Rightarrow \beta$.
- Simultaneous Move Games: Iterated Elimination of Strictly Dominated Strategies (Rationalizability).
- Simultaneous Move Games: Nash Equilibrium.