<□ ▶ < @ ▶ < E ▶ < E ▶ E り < C 1/24

CS540 Introduction to Artificial Intelligence Lecture 5

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

June 30, 2023

Kernel Trick

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ∧ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ } < □ ∧ < □ ∧ < □ ∧ < □ ∧ < □ ∧ < □ ∧ < □ ∧ < □ ∧ < □ ∧ < □ ∧ < □ ∧ < □ ∧ < □ ∧ < □ ∧ < □ ∧ < □ ∧ < □ ∧ < □ ∧ < □ ∧ < □ ∧ < □ ∧

- Supervised learning:
- Linear threshold unit: Perceptron algorithm.
- Logistic regression: gradient descent.
- Neural network: backpropogation, stochastic gradient descent.
- Support vector machine: PEGASOS algorithm.

Kernel Trick

Margin and Support Vectors Motivation

• The perceptron algorithm finds any line (*w*, *b*) that separates the two classes.

$$\hat{y}_i = \mathbb{1}_{\{w^T x_i + b \ge 0\}}$$

- The margin is the maximum width (thickness) of the line before hitting any data point.
- The instances that the thick line hits are called support vectors.
- The model that finds the line that separates the two classes with the widest margin is called support vector machine (SVM).

Subgradient Descent

Kernel Trick

◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○ 4/24

Support Vector Machine Description

- The problem is equivalent to minimizing the squared norm of the weights ||w||² = w^T w subject to the constraint that every instance is classified correctly (with the margin).
- Use subgradient descent to find the weights and the bias.

Kernel Trick

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで 5/24

Finding the Margin

• Define two planes: plus plane $w^T x + b = 1$ and minus plane $w^T x + b = -1$.

• The distance between the two planes is $\frac{2}{\sqrt{w^T w}}$.

• If all of the instances with $y_i = 1$ are above the plus plane and all of the instances with $y_i = 0$ are below the minus plane, then the margin is $\frac{2}{\sqrt{w^T w}}$.

Constrained Optimization Derivation

• The goal is to maximize the margin subject to the constraint that the plus plane and the minus plane separates the instances with $y_i = 0$ and $y_i = 1$.

$$\max_{w} \frac{2}{\sqrt{w^{T}w}} \text{ such that } \begin{cases} \left(w^{T}x_{i}+b\right) \leqslant -1 & \text{ if } y_{i}=0\\ \left(w^{T}x_{i}+b\right) \geqslant 1 & \text{ if } y_{i}=1 \end{cases}, i=1,2,...,n$$

- This is equivalent to the following minimization problem, called hard margin SVM.
- $\min_{w} \frac{1}{2} w^{T} w \text{ such that } (2y_{i} 1) \left(w^{T} x_{i} + b \right) \ge 1, i = 1, 2, ..., n$

Kernel Trick

Constrained Optimization

• The goal is to maximize the margin subject to the constraint that the plus plane and the minus plane separates the instances with $y_i = 0$ and $y_i = 1$.

$$\max_{w} \frac{2}{\sqrt{w^{T}w}} \text{ such that } \begin{cases} \left(w^{T}x_{i}+b\right) \leqslant -1 & \text{ if } y_{i}=0\\ \left(w^{T}x_{i}+b\right) \geqslant 1 & \text{ if } y_{i}=1 \end{cases}, i=1,2,...,n$$

• The two constraints can be combined. $\max_{w} \frac{2}{\sqrt{w^{T}w}} \text{ such that } (2y_{i} - 1) \left(w^{T}x_{i} + b\right) \ge 1, i = 1, 2, ..., n$

◆□ ▶ < @ ▶ < E ▶ < E ▶ E のQ (* 7/24)</p>

Subgradient Descent

Kernel Trick

Hard Margin SVM

$$\max_{w} \frac{2}{\sqrt{w^{T}w}} \text{ such that } (2y_{i}-1)\left(w^{T}x_{i}+b\right) \geq 1, i=1,2,...,n$$

• This is equivalent to the following minimization problem, called hard margin SVM.

$$\min_{w} \frac{1}{2} w^{T} w \text{ such that } (2y_{i} - 1) \left(w^{T} x_{i} + b \right) \ge 1, i = 1, 2, ..., n$$

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Kernel Trick

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ● ■ • ○ Q () - 9/24

Soft Margin Definition

- To allow for mistakes classifying a few instances, slack variables are introduced.
- The cost of violating the margin is given by some constant $\frac{1}{\sqrt{2}}$.
- Using slack variables ξ_i , the problem can be written as the following.

$$\begin{split} \min_{w} \frac{1}{2} w^{T} w + \frac{1}{\lambda} \frac{1}{n} \sum_{i=1}^{n} \xi_{i} \\ \text{such that } (2y_{i} - 1) \left(w^{T} x_{i} + b \right) \geqslant 1 - \xi_{i}, \xi_{i} \geqslant 0, i = 1, 2, ..., n \end{split}$$

Subgradient Descent

Kernel Trick

Soft Margin SVM

$$\begin{split} \min_{w} \frac{1}{2} w^{T} w + \frac{1}{\lambda} \frac{1}{n} \sum_{i=1}^{n} \xi_{i} \\ \text{such that } (2y_{i} - 1) \left(w^{T} x_{i} + b \right) \geq 1 - \xi_{i}, \xi_{i} \geq 0, i = 1, 2, ..., n \end{split}$$

• This is equivalent to the following minimization problem, called soft margin SVM.

$$\min_{w} \frac{\lambda}{2} w^{\mathsf{T}} w + \frac{1}{n} \sum_{i=1}^{n} \max\left\{0, 1 - (2y_i - 1) \left(w^{\mathsf{T}} x_i + b\right)\right\}$$

<ロ > < 母 > < 臣 > < 臣 > < 臣 > 三 の Q (10/24

Subgradient Descent

Kernel Trick

SVM Formulations

• Hard margin:

$$\min_{w} \frac{1}{2} w^{T} w \text{ such that } (2y_{i} - 1) \left(w^{T} x_{i} + b \right) \ge 1, i = 1, 2, ..., n$$

• Soft margin:

$$\min_{w} \frac{\lambda}{2} w^{\mathsf{T}} w + \frac{1}{n} \sum_{i=1}^{n} \max\left\{0, 1 - (2y_i - 1) \left(w^{\mathsf{T}} x_i + b\right)\right\}$$

< □ > < @ > < ≧ > < ≧ > E の Q C 11/24

Subgradient Descent

Kernel Trick

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへで 12/24

Subgradient Descent

$$\min_{w} \frac{\lambda}{2} w^{T} w + \frac{1}{n} \sum_{i=1}^{n} \max\left\{0, 1 - (2y_{i} - 1) \left(w^{T} x_{i} + b\right)\right\}$$

- The gradient for the above expression is not defined at points with $1 (2y_i 1) (w^T x_i + b) = 0.$
- Subgradient can be used instead of a gradient.

Kernel Trick

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへで 13/24

Subgradient

- The subderivative at a point of a convex function in one dimension is the set of slopes of the lines that are tangent to the function at that point.
- The subgradient is the version for higher dimensions.
- The subgradient $\partial f(x)$ is formally defined as the following set.

$$\partial f(x) = \left\{ v : f(x') \ge f(x) + v^T(x'-x) \forall x' \right\}$$

Kernel Trick

Subgradient Descent Step Definition

• One possible set of subgradients with respect to *w* and *b* are the following.

$$\partial_{w} C \ni \lambda w - \sum_{i=1}^{n} (2y_{i} - 1) x_{i} \mathbb{1}_{\{(2y_{i} - 1)(w^{T}x_{i} + b) \ge 1\}}$$
$$\partial_{b} C \ni - \sum_{i=1}^{n} (2y_{i} - 1)) \mathbb{1}_{\{(2y_{i} - 1)(w^{T}x_{i} + b) \ge 1\}}$$

• The gradient descent step is the same as usual, using one of the subgradients in place of the gradient.

Kernel Trick

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへで 15/24

Class Notation and Bias Term Definition

 Usually, for SVM, the bias term is not included and updated. Also, the classes are -1 and +1 instead of 0 and 1. Let the labels be z_i ∈ {-1, +1} instead of y_i ∈ {0, 1}. The gradient steps are usually written the following way.

$$w = (1 - \lambda) w - \alpha \sum_{i=1}^{n} z_{i} \mathbb{1}_{\{z_{i}w^{T}x_{i} \ge 1\}} x_{i}$$
$$z_{i} = 2y_{i} - 1, i = 1, 2, ..., n$$

Kernel Trick

Regularization Parameter

$$w = w - \alpha \sum_{i=1}^{n} z_i \mathbb{1}_{\{z_i w \tau_{x_i \ge 1}\}} x_i - \lambda w$$
$$z_i = 2y_i - 1, i = 1, 2, ..., n$$

- λ is usually called the regularization parameter because it reduces the magnitude of w the same way as the parameter λ in L2 regularization.
- The stochastic subgradient descent algorithm for SVM is called PEGASOS: Primal Estimated sub-GrAdient SOlver for Svm.

Kernel Trick

PEGASOS Algorithm

- Inputs: instances: $\{x_i\}_{i=1}^n$ and $\{z_i = 2y_i 1\}_{i=1}^n$
- Outputs: weights: $\{w_j\}_{j=1}^m$
- Initialize the weights.

$$w_j \sim \text{Unif } [0,1]$$

• Randomly permute (shuffle) the training set and performance subgradient descent for each instance *i*.

$$\mathbf{w} = (1 - \lambda) \mathbf{w} - \alpha \mathbf{z}_i \mathbb{1}_{\{\mathbf{z}_i \mathbf{w}^{\mathsf{T}} \times_i \ge 1\}} \mathbf{x}_i$$

• Repeat for a fixed number of iterations.

Kernel Trick

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 り < ○ 18/24

Kernel Trick

- If the classes are not linearly separable, more features can be created.
- For example, a 1 dimensional x can be mapped to $\varphi(x) = (x, x^2)$.
- Another example is to map a 2 dimensional (x_1, x_2) to $\varphi(x = (x_1, x_2)) = (x_1^2, \sqrt{2}x_1x_2, x_2^2).$

Kernel Trick

<□▶<□▶<□▶<三▶<=>> < => < => < = の < ○ 19/24

Kernelized SVM

- With a feature map φ , the SVM can be trained on new data points {($\varphi(x_1), y_1$), ($\varphi(x_2), y_2$), ..., ($\varphi(x_n), y_n$)}.
- The weights *w* correspond to the new features $\varphi(x_i)$.
- Therefore, test instances are transformed to have the same new features.

$$\hat{y}_i = \mathbb{1}_{\{w^{\mathcal{T}}\varphi(x_i) \ge 0\}}$$

Subgradient Descent

Kernel Trick

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > □ ≥ の < 20/24

Kernel Matrix Definition

• The feature map is usually represented by a $n \times n$ matrix K called the Gram matrix (or kernel matrix).

$$K_{ii'} = \varphi(x_i)^T \varphi(x_{i'})$$

Kernel Trick

<□▶<□▶<□▶<=▶<=▶<=> ○へで 21/24

Examples of Kernel Matrix Definition

• For example, if $\varphi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$, then the kernel matrix can be simplified.

$$K_{ii'} = \left(x_i^T x_{i'}\right)^2$$

• Another example is the quadratic kernel $K_{ii'} = (x_i^T x_{i'} + 1)^2$. It can be factored to have the following feature representations.

$$\varphi(x) = \left(x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1\right)$$

Kernel Trick

<□▶<□▶<□▶<□▶<=▶<=> ○ ○ ○ 22/24

Kernel Matrix Characterization

- A matrix *K* is kernel (Gram) matrix if and only if it is symmetric positive semidefinite.
- Positive semidefiniteness is equivalent to having non-negative eigenvalues.

Kernel Trick

Popular Kernels

• Other popular kernels include the following.

• Linear kernel:
$$K_{ii'} = x_i^T x_{i'}$$

- **2** Polynomial kernel: $K_{ii'} = (x_i^T x_{i'} + 1)^d$
- **3** Radial Basis Function (Gaussian) kernel: $K_{iii'} = \exp\left(-\frac{1}{\sigma^2} (x_i - x_{i'})^T (x_i - x_{i'})\right)$
- Gaussian kernel has infinite-dimensional feature representations. There are dual optimization techniques to find *w* and *b* for these kernels.

Kernel Trick

<ロト

- Supervised learning:
- Linear threshold unit: Perceptron algorithm.
- Logistic regression: gradient descent.
- Neural network: backpropogation, stochastic gradient descent.
- Support vector machine: PEGASOS algorithm.
- Decision tree (next time).