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Discriminative Model vs Generative Model
Motivation

Previous weeks’ focus is on discriminative models.

Given a training set pxi , yi qni�1, the task is classification
(machine learning) or regression (statistics), i .e. finding a
function f̂ such that given new instances x 1i , y can be

predicted as ŷi � f̂ px 1i q.
The function f̂ is usually represented by parameters w and b.
These parameters can be learned by methods such as gradient
descent by minimizing some cost objective function.
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Generative Models
Motivation

In probability terms, discriminative models are estimating
P tY |X u, the conditional distribution. For example,
ai � P tyi � 1|xiu and 1� ai � P tyi � 0|xiu.
Generative models are estimating P tY ,X u, the joint
distribution.

Bayes rule is used to perform classification tasks.

P tY |X u � P tY ,X u
P tX u � P tX |Y uP tY u

P tX u
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Joint Distribution
Motivation

The joint distribution of Xj and Xj 1 provides the probability of
Xj � xj and Xj 1 � xj 1 occur at the same time.

P
 
Xj � xj ,Xj 1 � xj 1

(

The marginal distribution of Xj can be found by summing
over all possible values of Xj 1 .

P tXj � xju �
¸
xPXj1

P
 
Xj � xj ,Xj 1 � x

(



5/25

Generative Models Bayesian Network Naive Bayes

Conditional Distribution
Motivation

Suppose the joint distribution is given.

P
 
Xj � xj ,Xj 1 � xj 1

(

The conditional distribution of Xj given Xj 1 � xj 1 is ratio
between the joint distribution and the marginal distribution.

P
 
Xj � xj |Xj 1 � xj 1

( � P
 
Xj � xj ,Xj 1 � xj 1

(

P
 
Xj 1 � xj 1

(
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Notation
Motivation

The notations for joint, marginal, and conditional distributions
will be shortened as the following.

P
 
xj , xj 1

(
,P txju ,P

 
xj |xj 1

(

When the context is not clear, for example when
xj � a, xj 1 � b with specific constants a, b, subscripts will be
used under the probability sign.

PXj ,Xj1
ta, bu ,PXj

tau ,PXj |Xj1
ta|bu
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Bayesian Network
Definition

A Bayesian network is a directed acyclic graph (DAG) and a
set of conditional probability distributions.

Each vertex represents a feature Xj .

Each edge from Xj to Xj 1 represents that Xj directly influences
Xj 1 .

No edge between Xj and Xj 1 implies independence or
conditional independence between the two features.
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Conditional Independence
Definition

Recall two events A,B are independent if:

P tA,Bu � P tAuP tBu or P tA|Bu � P tAu

In general, two events A,B are conditionally independent,
conditional on event C if:

P tA,B|Cu � P tA|CuP tB|Cu or P tA|B,Cu � P tA|Cu
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Causal Chain
Definition

For three events A,B,C , the configuration AÑ B Ñ C is
called causal chain.

In this configuration, A is not independent of C , but A is
conditionally independent of C given information about B.

Once B is observed, A and C are independent.
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Common Cause
Definition

For three events A,B,C , the configuration AÐ B Ñ C is
called common cause.

In this configuration, A is not independent of C , but A is
conditionally independent of C given information about B.

Once B is observed, A and C are independent.
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Common Effect
Definition

For three events A,B,C , the configuration AÑ B Ð C is
called common effect.

In this configuration, A is independent of C , but A is not
conditionally independent of C given information about B.

Once B is observed, A and C are not independent.
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Storing Distribution
Definition

If there are m binary variables with k edges, there are 2m joint
probabilities to store.

There are significantly less conditional probabilities to store.
For example, if each node has at most 2 parents, then there
are less than 4m conditional probabilities to store.

Given the conditional probabilities, the joint probabilities can
be recovered.
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Training Bayes Net
Definition

Training a Bayesian network given the DAG is estimating the
conditional probabilities. Let P pXjq denote the parents of the
vertex Xj , and p pXjq be realizations (possible values) of
P pXjq.

P txj |p pXjqu , p pXjq P P pXjq

It can be done by maximum likelihood estimation given a
training set.

P̂ txj |p pXjqu �
cxj ,ppXjq
cppXjq
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Laplace Smoothing
Definition

Recall that the MLE estimation can incorporate Laplace
smoothing.

P̂ txj |p pXjqu �
cxj ,ppXjq � 1

cppXjq � |Xj |

Here, |Xj | is the number of possible values (number of
categories) of Xj .

Laplace smoothing is considered regularization for Bayesian
networks because it avoids overfitting the training data.
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Bayes Net Inference 1
Definition

Given the conditional probability table, the joint probabilities
can be calculated using conditional independence.

P tx1, x2, ..., xmu �
m¹
j�1

P txj |x1, x2, ..., xj�1, xj�1, ..., xmu

�
m¹
j�1

P txj |p pXjqu
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Bayes Net Inference 2
Definition

Given the joint probabilities, all other marginal and conditional
probabilities can be calculated using their definitions.

P
 
xj |xj 1 , xj2 , ...

( � P
 
xj , xj 1 , xj2 , ...

(

P
 
xj 1 , xj2 , ...

(

P
 
xj , xj 1 , xj2 , ...

( �
¸

Xk :k�j ,j 1,j2,...

P tx1, x2, ..., xmu

P
 
xj 1 , xj2 , ...

( �
¸

Xk :k�j 1,j2,...

P tx1, x2, ..., xmu
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Bayesian Network
Algorithm

Input: instances: txiuni�1 and a directed acyclic graph such
that feature Xj has parents P pXjq.
Output: conditional probability tables (CPTs): P̂ txj |p pXjqu
for j � 1, 2, ...,m.

Compute the transition probabilities using counts and Laplace
smoothing.

P̂ txj |p pXjqu �
cxj ,ppXjq � 1

cppXjq � |Xj |
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Network Structure
Discussion

Selecting from all possible structures (DAGs) is too difficult.

Usually, a Bayesian network is learned with a tree structure.

Choose the tree that maximizes the likelihood of the training
data.
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Chow Liu Algorithm
Discussion

Add an edge between features Xj and Xj 1 with edge weight
equal to the information gain of Xj given Xj 1 for all pairs j , j

1.

Find the maximum spanning tree given these edges. The
spanning tree is used as the structure of the Bayesian network.
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Aside: Prim’s Algorithm
Discussion

To find the maximum spanning tree, start with an arbitrary
vertex, a vertex set containing only this vertex, V , and an
empty edge set, E .

Choose an edge with the maximum weight from a vertex
v P V to a vertex v 1 R V and add v 1 to V , add an edge from
v to v 1 to E

Repeat this process until all vertices are in V . The tree
pV ,E q is the maximum spanning tree.
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Classification Problem
Discussion

Bayesian networks do not have a clear separation of the label
Y and the features X1,X2, ...,Xm.

The Bayesian network with a tree structure and Y as the root
and X1,X2, ...,Xm as the leaves is called the Naive Bayes
classifier.

Bayes rules is used to compute P tY � y |X � xu, and the
prediction ŷ is y that maximizes the conditional probability.

ŷi � argmax
y

P tY � y |X � xiu
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Multinomial Naive Bayes
Discussion

The implicit assumption for using the counts as the maximum
likelihood estimate is that the distribution of Xj |Y � y , or in
general, Xj |P pXjq � p pXjq has the multinomial distribution.

P tXj � x |Y � yu � px

p̂x � cx ,y
cy
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Gaussian Naive Bayes
Discussion

If the features are not categorical, continuous distributions
can be estimated using MLE as the conditional distribution.

Gaussian Naive Bayes is used if Xj |Y � y is assumed to have
the normal distribution.

lim
εÑ0

1

ε
P tx   Xj ¤ x � ε|Y � yu � 1?

2πσ
pjq
y

exp

�
���

�
x � µ

pjq
y

	2

2
�
σ
pjq
y

	2

�
�
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Gaussian Naive Bayes Training
Discussion

Training involves estimating µ
pjq
y and σ

pjq
y since they

completely determine the distribution of Xj |Y � y .

The maximum likelihood estimates of µ
pjq
y and

�
σ
pjq
y

	2
are the

sample mean and variance of the feature j .

µ̂
pjq
y � 1

ny

ņ

i�1

xij1tyi�yu, ny �
ņ

i�1

1tyi�yu

�
σ̂
pjq
y

	2
� 1

ny

ņ

i�1

�
xij � µ̂

pjq
y

	2
1tyi�yu

sometimes
�
σ̂
pjq
y

	2
� 1

ny � 1

ņ

i�1

�
xij � µ̂

pjq
y

	2
1tyi�yu
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Tree Augmented Network Algorithm
Discussion

It is also possible to create a Bayesian network with all
features X1,X2, ...,Xm connected to Y (Naive Bayes edges)
and the features themselves form a network, usually a tree
(MST edges).

Information gain is replaced by conditional information gain
(conditional on Y ) when finding the maximum spanning tree.

This algorithm is called TAN: Tree Augmented Network.
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