
CS 540: Introduction to Artificial Intelligence Summer 2020

Midterm Review

Instructor: Young Wu TA: Dandi Chen

1. (M2Q4) (Spring 2017 Final Q3, Spring 2018 Final Q7, video for M2Q5) Consider
a Linear Threshold Unit (LTU) perceptron with initial weights w = [−0.8,−0.5,−0.8]T and
bias b = 0.5. Given a new input x = [0, 0, 1]T and y = 1, learning rate α = 1, compute the
updated weights and bias [w1, w2, w3, b].

Solution: According to Perceptron Algorithm,

w = w − α(ai − yi)xi
b = b− α(ai − yi)

Since

ai = 1{wT x+b≥0}

= 1{−0.8×0−0.5×0−0.8×1+0.5≥0}

= 1{−0.3≥0}

= 0

Then the updated weights and bias are

w = w − α(ai − yi)xi

=

−0.8
−0.5
−0.8

− 1 · (0− 1) ·

0
0
1


=

−0.8
−0.5
0.2


b = b− α(ai − yi)

= 0.5− 1 · (0− 1)

= 1.5
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http://pages.cs.wisc.edu/~yw/CS540M2S20C.htm
http://pages.cs.wisc.edu/~dyer/cs540/exams/exam2-s18-sol.pdf
https://www.youtube.com/watch?v=w-q0aNXuQOU&feature=youtu.be


2. (M3Q7, video for M3Q6) (Fall 2010 Final Q17)

Fill in the missing weight below so that it com-
putes the following function. All inputs takes
value 0 or 1, and the perceptrons are linear thresh-
old units.

x1 x2 y or o1
0 0 1
0 1 1
1 0 0
1 1 0

Hint: if the weights are not shown clearly, you
could move the nodes around with mouse or
touch.

Solution:

x2

x1

h2

h1

o1

w
(1)
11

w
(1)
12 = −0.07

w
(1)
21 = 0.36

w
(1)
22 = −0.98

w
(2)
11 = 0.99

w
(2)
21 = 0.95

b
(1)
2 = 0.53

b
(1)
1 = 0.05

b
(2)
1 = −0.97

h1 = 1{w(1)
11 x1+w

(1)
21 x2+b

(1)
1 ≥0}

h2 = 1{w(1)
12 x1+w

(1)
22 x2+b

(1)
2 ≥0}

o1 = 1{w(2)
11 h1+w

(2)
21 h2+b

(2)
1 ≥0}

x1 x2 w
(1)
11 x1 + w

(1)
21 x2 + b

(1)
1 h1 w

(1)
12 x1 + w

(1)
22 x2 + b

(1)
2 h2 w

(2)
11 h1 + w

(2)
21 h2 + b

(2)
1 o1

0 0 w
(1)
11 · 0 + 0.36 · 0 + 0.05 1 −0.07 · 0− 0.98 · 0 + 0.53 1 0.99 · 1 + 0.95 · 1− 0.97 1

0 1 w
(1)
11 · 0 + 0.36 · 1 + 0.05 1 −0.07 · 0− 0.98 · 1 + 0.53 0 0.99 · 1 + 0.95 · 0− 0.97 1

1 0 w
(1)
11 · 1 + 0.36 · 0 + 0.05 1

{w(1)
11 +0.05≥0}

= 0 −0.07 · 1− 0.98 · 0 + 0.53 1 0.99 · 0 + 0.95 · 1− 0.97 0

1 1 w
(1)
11 · 1 + 0.36 · 1 + 0.05 1

{w(1)
11 +0.41≥0}

= 0 −0.07 · 1− 0.98 · 1 + 0.53 0 0.99 · 0 + 0.95 · 0− 0.97 0

Therefore,

w
(1)
11 + 0.05 < 0

w
(1)
11 + 0.41 < 0

i.e.
w

(1)
11 < −0.41
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http://pages.cs.wisc.edu/~yw/CS540M3S20C.htm
https://www.youtube.com/watch?v=iLfDh5ZWow4&feature=youtu.be
http://pages.cs.wisc.edu/~jerryzhu/cs540/handouts/cs540f10final-solutions.pdf


3. (Summer 2019 Midterm A Q28) Given the following training set S, suppose n instances
are removed, and 1 nearest neighbor with Manhattan distance is trained on the remaining set
S′, and tested on the original training set S. If an instance is equally distant from two points
with different labels, the 1 nearest neighbor labels the instance as 0 with probability 1

2 and
1 with probability 1

2 . If the accuracy is 100 percent (for certain) on S, what is the maximum
possible value for n?

S = (xi, yi)i=1,2,...,5 = {(−2, 0), (−1, 0), (0, 0), (1, 1), (2, 1)}

Solution:

-2 -1 0 1 2

decision boundary

- - -

class 0

+ +

class 1

This is a linearly separable dataset. It trains on 5− n instances (i.e. set S′), and tests on 5
instances (i.e. set S). Removing (−2, 0) or removing (−1, 0) or removing (2, 1) or removing
(−2, 0), (−1, 0), (2, 1) all maintain the same decision boundary.

• If (−2, 0) is removed: training set (set S′) is {(−1, 0), (0, 0), (1, 1), (2, 1)}; testing set
(set S): {(−2, 0), (−1, 0), (0, 0), (1, 1), (2, 1)}. Then x = −2 will be labeled to be 0 as its
nearest neighbor is (−1, 0). Therefore, its predicted label and its actual label are both
0, i.e. 100% testing accuracy is guaranteed.

-1 0 1 2

decision boundary

- -

class 0

+ +

class 1

• If (2, 1) is removed:

-2 -1 0 1

decision boundary

- - -

class 0

+

class 1

• If (−2, 0), (−1, 0), (2, 1) are removed:

0 1

decision boundary

-

class 0

+

class 1

Therefore, the maximum possible value for n is 3, i.e. removing (−2, 0), (−1, 0), (2, 1).
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http://pages.cs.wisc.edu/~yw/CS540/CS540_Midterm_A.pdf


4. (Summer 2019 Midterm A Q29) Continue from the previous question. Same
assumptions as the previous question: what is the maximum possible value for n if the
training set S is changed to the following?

S = (xi, yi)i=1,2,...,5 = {(−2, 1), (−1, 0), (0, 0), (1, 1), (2, 1)}

Solution:

-2 -1 0 1 2

decision boundary

+

class 1

- -

class 0

+ +

class 1

This dataset is not linearly separable. It still trains on 5− n instances (i.e. set S′), and tests
on 5 instances (i.e. set S). Removing (2, 1) or removing (0, 0) and (1, 1) can maintain the
same decision boundary.

• If (0, 0) and (1, 1) are removed: training set (set S′) is {(−2, 1), (−1, 0), (2, 1)}; testing
set (set S) is {(−2, 1), (−1, 0), (0, 0), (1, 1), (2, 1)}. Then x = 0 will be labeled 0 as its
nearest neighbor is (−1, 0). x = 1 will be labeled 1 as its nearest neighbor is (2, 1).
Therefore, their predicted labels and actual labels are the same, i.e. 100% testing
accuracy is guaranteed.

-2 -1 2

decision boundary

+

class 1

-

class 0

+

class 1

• If (0, 0) is removed: training set (set S′) is {(−2, 1), (−1, 0), (1, 1), (2, 1)}; testing set
(set S) is {(−2, 1), (−1, 0), (0, 0), (1, 1), (2, 1)}. Then x = 0 will be labeled 0 as its
nearest neighbor is (−1, 0) if the tie-breaking rule is to use the label of the lower
indexed instance when having equal distance (this is the default tie-breaking rule this
year while it was not for year 2019). However, if we follow the tie-breaking rule in this
problem (“the 1 nearest neighbor labels the instance as 0 with probability 1

2 and 1 with
probability 1

2”), we cannot guarantee whether its label will be either 1 or 0, since the
Manhattan distance between (0, 0) to its nearest neighbors (−1, 0) and (1, 1) are the
same while they are from two different classes.

-2 -1 1 2

decision boundary

+

class 1

-

class 0

+ +

class 1

Therefore, the maximum possible value for n is 2.
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http://pages.cs.wisc.edu/~yw/CS540/CS540_Midterm_A.pdf


5. (Summer 2019 Midterm A Q19) What is the convolution between the following two
matrices (use zero padding, i.e. set nonexistent values to 0 around the edges of the first
matrix)? Remember to flip the filter first.1 2 3

4 5 6
7 8 9

 ∗
0 0 0

0 0 0
0 0 1


Solution: Flipped filter is 1 0 0

0 0 0
0 0 0


0 0 0

0

0

1 2 3

4 5 6

7 8 9

0 0 0

1 2 3

4 5 6

7 8 9

0 0 0

0

0

1 2 3

4 5 6

7 8 9

0

0

0

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

0

0

0

1 2 3

4 5 6

7 8 9

0 00

0

0

1 2 3

4 5 6

7 8 9

0 0 0

1 2 3

4 5 6

7 8 9

0 0 0

0

0

1 2 3

4 5 6

7 8 9

Then the convolution is 0 0 0
0 1 2
0 4 5
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http://pages.cs.wisc.edu/~yw/CS540/CS540_Midterm_A.pdf


6. (Summer 2019 Midterm A Q20) Continue from the previous question, what is the
convolution between the following two matrices? Remember to flip the filter first.0 0 0

0 0 0
0 0 1

 ∗
1 2 3

4 5 6
7 8 9


Solution: Flipped filter is 9 8 7

6 5 4
3 2 1


0 0 0

0

0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 1

0 0 0

0

0

0 0 0

0 0 0

0 0 1

0

0

0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 1

0

0

0

0 0 0

0 0 0

0 0 1

0 00

0

0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 1

0 0 0

0

0

0 0 0

0 0 0

0 0 1

Then the convolution is 0 0 0
0 1 2
0 4 5
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http://pages.cs.wisc.edu/~yw/CS540/CS540_Midterm_A.pdf


7. (Fall 2019 Final Q15) A convolutional neural network (CNN) has an input image of size
12× 12 that is connected to a convolutional layer that uses a 3× 3 filter, no padding of the
image, and a stride of 1. The convolutional layer is then connected to a pooling layer that
uses 2× 2 max pooling, a stride of 2, and no padding of the convolutional layer. The
pooling layer is then fully connected to an output layer that contains 3 output units. There
are no hidden layers between the pooling layer and the output layer. How many different
weights must be learned in this whole network, not including any bias weights, if any?

Solution:

#weights = 3× 3 + 25× 3

One more example with 3 activation maps (i.e. 3 feature maps):

#weights = 3× 3× 3 + 75× 3
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https://piazza.com/redirect/s3?bucket=uploads&prefix=paste%2Fjl5jv6gfiie4k6%2Fcc8ac6d0f58c13405050d1dbba14b34a0a0ae05a32f58f3a489185843ef8af68%2Fexam2-f19-sol.pdf


8. (M7Q1, video) (Fall 2016 Final Q18, Fall 2011 Midterm Q20) Consider a
classification problem with n = 28 classes, y ∈ {1, 2, ..., n}, and two binary features
x1, x2 ∈ {0, 1}. Suppose P(Y = y) = 1

28 , P(x1 = 1|Y = y) = y
46 , P(x2 = 1|Y = y) = y

52 .
Which class will naive Bayes classifier produce on a test item with x1 = 1 and x2 = 1?
Hint: make sure you read and understand Fall 2016 Final Q18.

Solution:

Y

x1 x2

argmax
y

P(Y = y|x1 = 1, x2 = 1) = argmax
y

P(x1 = 1, x2 = 1, Y = y)

P(x1 = 1, x2 = 1)

= argmax
y

P(x1 = 1, x2 = 1|Y = y)P(Y = y)

P(x1 = 1, x2 = 1)

= argmax
y

P(x1 = 1|Y = y)P(x2 = 1|Y = y)P(Y = y)

P(x1 = 1, x2 = 1)

= argmax
y

P(x1 = 1|Y = y)P(x2 = 1|Y = y)

= argmax
y

y

46
· y

52

= argmax
y

y2

y2 is increasing when y is positive. Since y ∈ 1, 2, ..., n and n = 28,

argmax
y

y2 = 28
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http://pages.cs.wisc.edu/~yw/CS540M7S20C.htm
https://www.youtube.com/watch?v=UFlA2MppBt4&feature=youtu.be
http://pages.cs.wisc.edu/~jerryzhu/cs540/handouts/f16fa.pdf
http://pages.cs.wisc.edu/~jerryzhu/cs540/handouts/cs540f11midterm_solution.pdf


9. (M7Q2) (Fall 2014 Final Q9) Consider the following directed graphical model over
binary variables: A→ B ← C. Given the CPTs:

Variable Probability Variable Probability

P(A = 1) 0.68
P(C = 1) 0.64
P(B = 1|A = 1, C = 1) 0.85 P(B = 1|A = 0, C = 1) 0.95
P(B = 1|A = 1, C = 0) 0.99 P(B = 1|A = 0, C = 0) 0.44

What is the probability that P(A = 0, B = 0, C = 1)?

Solution:

P(¬A,¬B,C) = P(¬B|¬A,C) · P(¬A,C)

= P(¬B|¬A,C) · P(¬A) · P(C)

= (1− P(B|¬A,C)) · (1− P(A)) · P(C)

= (1− 0.95)× (1− 0.68)× 0.64

B

A C

common effect

9

http://pages.cs.wisc.edu/~yw/CS540M7S20C.htm
http://pages.cs.wisc.edu/~jerryzhu/cs540/handouts/f14f.pdf


10. (M7Q3) (Fall 2014 Final Q9) Consider the following directed graphical model over
binary variables: A→ B → C. Given the CPTs:

Variable Probability Variable Probability

P(A = 1) 0.17
P(B = 1|A = 1) 0.2 P(B = 1|A = 0) 0.34
P(C = 1|B = 1) 0.01 P(C = 1|B = 0) 0.33

What is the probability that P(A = 1|C = 1)?

Solution:

P(A|C) =
P(A,C)

P(C)
=

P(A,B,C) + P(A,¬B,C)

P(C)

While

P(A,B,C) = P(C|A,B) · P(A,B)

= P(C|A,B) · P(B|A) · P(A)

= P(C|B) · P(B|A) · P(A)

A

B

C

causal chain
In other words,

P(A|C) =
P(A,C)

P(C)

=
P(A,B,C) + P(A,¬B,C)

P(A,B,C) + P(A,¬B,C) + P(¬A,B,C) + P(¬A,¬B,C)

=
P(C|B) · P(B|A) · P(A) + P(C|¬B) · P(¬B|A) · P(A)

P(C|B) · P(B|A) · P(A) + P(C|¬B) · P(¬B|A) · P(A) + P(C|B) · P(B|¬A) · P(¬A) + P(C|¬B) · P(¬B|¬A) · P(¬A)

=
0.01× 0.2× 0.17 + 0.33× (1− 0.2)× 0.17

0.01× 0.2× 0.17 + 0.33× (1− 0.2)× 0.17 + 0.01× 0.34× (1− 0.17) + 0.33× (1− 0.34)× (1− 0.17)
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http://pages.cs.wisc.edu/~yw/CS540M7S20C.htm
http://pages.cs.wisc.edu/~jerryzhu/cs540/handouts/f14f.pdf


11. (M7Q4, video) (Fall 2014 Final Q9) Consider the following directed graphical model
over binary variables: A← B → C. Given the CPTs:

Variable Probability Variable Probability

P(B = 1) 0.66
P(C = 1|B = 1) 0.12 P(C = 1|B = 0) 0.26
P(A = 1|B = 1) 0.28 P(A = 1|B = 0) 0.53

What is the probability that P(A = 0|C = 1)?

Solution:

P(¬A|C) =
P(¬A,C)

P(C)
=

P(¬A,B,C) + P(¬A,¬B,C)

P(C)

While

P(¬A,B,C) = P(¬A,C|B) · P(B)

= P(¬A|B) · P(C|B) · P(B)

B

A C

common cause

In other words,

P(¬A|C) =
P(¬A,C)

P(C)

=
P(¬A,B,C) + P(¬A,¬B,C)

P(¬A,B,C) + P(¬A,¬B,C) + P(A,B,C) + P(A,¬B,C)

=
P(¬A|B) · P(C|B) · P(B) + P(¬A|¬B) · P(C|¬B) · P(¬B)

P(¬A|B) · P(C|B) · P(B) + P(¬A|¬B) · P(C|¬B) · P(¬B) + P(A|B) · P(C|B) · P(B) + P(A|¬B) · P(C|¬B) · P(¬B)

=
(1− 0.28)× 0.12× 0.66 + (1− 0.53)× 0.26× (1− 0.66)

(1− 0.28)× 0.12× 0.66 + (1− 0.53)× 0.26× (1− 0.66) + 0.28× 0.12× 0.66 + 0.53× 0.26× (1− 0.66)
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http://pages.cs.wisc.edu/~yw/CS540M7S20C.htm
https://www.youtube.com/watch?reload=9&v=qVbKCvflfKk&feature=youtu.be
http://pages.cs.wisc.edu/~jerryzhu/cs540/handouts/f14f.pdf


12. (Spring 2017 Final Q8)

Consider the following Bayesian Network containing 5 Boolean
random variables:

(a) Write an expression for computing P(A,¬S,H,E,¬C)
given only information that is in the associated CPTs for
this network.

(c) How many numbers must be stored in total in all CPTs
associated with this network (excluding numbers that can
be calculated from other numbers)?

A S H

E

C

Solution: (a)

P(A,¬S,H,E,¬C) = P(¬C|A,¬S,H,E) · P(A,¬S,H,E)

= P(¬C|H,E) · P(E|A,¬S,H) · P(A,¬S,H)

= P(¬C|H,E) · P(E|A,¬S,H) · P(A) · P(¬S) · P(H)

(c) 1 + 1 + 1 + 23 + 22

1 P(A = 1)

1 P(S = 1)

1 P(H = 1)

23 P(E = 1|A,S,H),P(E = 1|¬A,S,H), ...,P(E = 1|¬A,¬S,¬H)

22 P(C = 1|E,H),P(C = 1|¬E,H),P(C = 1|E,¬H),P(C = 1|¬E,¬H)

Last updated: June 29, 2020 at 8:34pm
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