CS 540: Introduction to Artificial Intelligence Summer 2020
Midterm Review

Instructor: Young Wu TA: Dandi Chen

1. (M2Q4) (Spring 2017 Final Q3, Spring 2018 Final Q7, video for M2Q5) Consider
a Linear Threshold Unit (LTU) perceptron with initial weights w = [—0.8, —0.5, —0.8]" and
bias b = 0.5. Given a new input = = [0, 0, I]T and y = 1, learning rate o = 1, compute the
updated weights and bias [wy, w2, w3, b].

Solution: According to Perceptron Algorithm,

w=w — ala; —y;)x;

b=>0b—«ala; —y)

Since

a; = LT 1b>0) Wix1 + w2x2 + w3x3 + b

= L{_0.8x0-05x0-0.8x1+0.5>0}

= Ly_0.3>0}
= ()

Then the updated weights and bias are

w=w — ala; — y;)x;

—(.8

= |—=05] —=1-(0=1)- 10 b=0b— ala; —y)
| —0.8) 1 =05—-1-(0-1)
()8 = 1.5

= | —0.5
| 0.2




2. (M3Q7, video for M3Q6) (Fall 2010 Final Q17)

I1ll in the missing weight below so that it com-

putes the following function. All inputs takes

value () or 1. and the perceptrons are linear thresh-

. -(0.97
old units.
I Iro | Yy or o
() 0 1 0.95 o
() 1 1
1 () ()
1 1 () 0.99
Hint: if the weights are not shown clearly, you
could move the nodes around with mouse or M?
O
touch.
Solution:
h1, h2, o1 can be either 0 or 1
wyy = 0.36 hl - l{u";{]ij-]]“*‘u ﬁﬁ’awb‘”:}n}
h? — ]]- (1) (1) (1)
. w J + Wy To+by ‘=0
(1) wil} = ().99 { 121 }

fﬂl‘.l — - —
. ®/ o1 = ]]'{H'Hhhﬁiuluhfn—fb( T'}{}l}
11

[r},” = 0.05

ry X9 "JIEH}II + w E‘-'l}l" +b(l” iy mi 1.}11 + w ':~_. 1.};1.':- . b;” ho u-u}hl + w 31}-’1 -+ bw} m
0 0 || wy 0+036-0+0.05 1 ~0.07-0—0.98-0+053 [ 1 || 0.99-140.95-1-097 | 1
0 1 || wl) -0+036-1+0.05 1 ~0.07-0-098-1+053 | 0 || 099-1+095-0-0.97 | 1
1 0 || wi) 14036-0+0.05 L1030y =0 [| —0-07-1-098-0+053 | 1 || 0.99-0+0.95-1—0.97 | 0
11| wil14036-1+0.05 L) 40.0130) = —0.07-1-098-1+053 [ 0 || 099-04095-0-097 | 0
Therefore, If h1 =1, o1 cannot be O when x1 = 1.
1 -
w'iij +0.05 < 0 Therefore, h1 has to be 0.
w“ +0.41 <0
l.e.

u_.'ﬂj < —0.41



3. (Summer 2019 Midterm A Q28) Given the following training set S, suppose n instances
are removed, and 1 nearest neighbor with Manhattan distance 1s trained on the remaining set
S’, and tested on the original training set S. If an instance is equally distant from two points

with different labels, the 1 nearest neighbor labels the instance as 0 with probability % and
1 with probability 3. If the accuracy is 100 percent (for certain 5. what 18 the maximum

pDSﬂl[]IE VﬂIllE fﬂl‘ n;

tie-breaking rule

S = (;I',;., yi)i=1.2,....ﬁ - {(_2*0)* (—l,ﬂ),(ﬂ.} 0)*(15 1)5(21~ 1)}

Solution:
class () class 1

= e

9 1 0 ! 1 2

decision boundary

This is a linearly separable dataset. It trains on 5 — n instances (i.e. set S’), and tests on 5
instances (i.e. set S). Removing (—2,0) or removing (—1,0) or removing (2, 1) or removing
(—2,0),(—1.0),(2,1) all maintain the same decision boundary.

e If (—2.0) is removed: training set (set S') is {(—1.0),(0,0),(1.1).(2,1)}: testing set
(set S): {(—2,0),(—=1,0).(0,0),(1.1),(2,1)}. Then x = —2 will be labeled to be 0 as its
nearest neighbor is (—1,0). Therefore, its predicted label and its actual label are both
0, i.e. 100% testing accuracy is guaranteed.

class () class 1

E o =

|
I
|
. . : -
|
|

-1 0 1 2

decision boundary

e If (2,1) is removed:

class () class 1

E o

I
I
|
] : J'.. ]
-2 -1 0 .+ 1
I
decision boundary

o If (—2,0).(—1,0).(2,1) are removed:

class () class 1

0 1

I
|
- 04
|
|
|
decision boundary

Therefore, the maximum possible value for n is 3, i.e. removing (—2,0), (—1.0).(2,1).



In general, training set
and testing set are not
overlapped.

a different tie-breaking rule

4. (Summer 2019 Midterm A Q29) Continue from the previous question. Same

assumptions as the previous question: what is the maximum possible value for n if the
training set S is changed to the following?

S = (IH yi)izl.ﬂ ..... 5 o— {(_2?- 1)* (_11& 0)-; (Ut ﬂ)* (]'ﬁ 1)'; {2* 1)}
Solution:
class 1 class () class 1
20N - 0o /o1 >
~~<---""decision boundary

This dataset is not linearly separable. It still trains on 5 — n instances (i.e. set S'), and tests
on H instances (i.e. set §). Removing (2,1) or removing (0,0) and (1, 1) can maintain the
same decision boundary.

e If (0,0) and (1,1) are removed: training set (set S")is {(—2.1),(—1.0),(2.1)}: testing
set (set §) is {(—2.1).(—1.0),(0.0),(1,1).(2.1)}. Then x = 0 will be labeled 0 as its
nearest neighbor is (—1,0). = = 1 will be labeled 1 as its nearest neighbor is (2,1).
Therefore, their predicted labels and actual labels are the same. i.e. 100% testing
accuracy is guaranteed.

class 1 class () class 1

Sy

~----" decision boundary

e If (0,0) is removed: training set (set S') is {(—2,1).(—1,0),(1.1),(2.1)}: testing set
(set S)is {(—2,1),(—=1,0),(0,0),(1.1),(2,1)}. Then = = 0 will be labeled 0 as its
nearest neighbor is (—1,0) if the tie-breaking rule is to use the label of the lower
indexed instance when having equal distance (this is the default tie-breaking rule this
year while it was not for year 2019). However. if we follow the tie-breaking rule in this
problem (“the 1 nearest neighbor labels the instance as (0 with probability % and 1 with
probability %“), we cannot guarantee whether its label will be either 1 or 0. since the
Manhattan distance between (0. 0) to its nearest neighbors (—1.0) and (1.1) are the
same while they are from two different classes.

class 1 class () class 1

&
“=----" decision boundary

Therefore, the maximum possible value for n is 2.



5. (Summer 2019 Midterm A Q19) What is the convolution between the following two
matrices (use zero padding, i.e. set nonexistent values to 0 around the edges of the first
matrix)”? Remember to flip the filter first.

Solution: Flipped filter is

: 1 2.3 '1 2 3| 1'2 3 0
456 4.5 6. 415 6_0.
i 89 7T 89 8 9
0*1+1*0+20+0*0+4*0+50+0"0+7°0+8*0=0
01 2. 12 3 1[5'371';
04 5! 4 5 6! 4'5 6 0!
0. 18, 7.8 9, 789 0.,
®+ 60+ 00+ 8" 0+90+0*0+0"0+0*0+0"0 =25
1 2 1 2 3 1 2 3
r====-=-= I r===-==-= I e
:1145: :456: 4| 6 :
078, T8 9 7789 :
0 0 0, 0 0 0, : I
Then the convolution™
0 0
0 1 2
) 4 |

]



6. (Summer 2019 Midterm A Q20) Continue from the previous question, what is the
convolution between the following two matrices? Remember to flip the filter first.

0 0 0] 1 2 3]
0 0 Ofx1{4 5 6
0o 0 1) |[7 8 9
Solution: Flipped filter is
9 8 T
6 5 4
3 2 1]
070G T i
0070 00 0 0,00 0]
. ..0.0:0 1000 01000,
0 01 00 1 001
00 010 010 0 0
00 0'0 0/00 0]
0_0_0.:1 0101 0.
09 +0"8+0"7/ +0"6+ 0"+ 174 +
000 000
r-—=—=—=-- | r-=-—===-=- I
00 010 0:0 0 0
0,01 ]

EH 0 0,1

e o o e o o o e = o §

Then the convolution 1s




convolution
3*3 kernel

stride=1 |
~ | | size = (4-3+1)*(4-3+1)
™ I 2*2 output
474 Input 7. (Fall 2019 Final Q15) /A convolutional neural network (CNN) has an input image of size

12 x 12 that is connectegl to a convolutional layer that uses a 3 x 3 filter, no padding of the
. T'he convolutional layer is then connected to a pooling layer that
uses 2 x 2 max pooling., a stride of 2, and no padding of the convolutional layer. The
% 4*4 input pooling layer is then fully connected to an output layer that contains 3 output units. There
| are no hidden layers jpetween the pooling layer and the output layer. How many different

ned in this whole network, not including any bias weights, if any?

image, and a stride of

- welghts must be le

2*2 kernel Solution:

stride = 2
pooling Inputs Feature maps Hidden units tputs
5x5 25

:|H 2*2 output

size = (4/2) * (4/2)

Convolution Max-pooling h
stride= stride=2 Flatten Fully
2x2 kernel

conv filter fully connected

One more example witl@mtiv&tiﬂn maps (i.e. 3 feature maps):

75 =5*5*3 flatten

Zero Feature Feature Hidden
Inputs padding aps aps units Outputs
10x10 12x12 10x10 5x5 75 3

L=

%

Convolution Max-pooling Flatten Fully
stride=1 stride=2 connected

3 activation maps 3x3 kemnel 2x2 kernel

#weights = 3 x 3 x(3)+ 75 x 3

fully connected

convolution



8. (M7Q1, video) (Fall 2016 Final Q18, Fall 2011 Midterm Q20) Consider a
classification problem with n = 28 classes, y € {1,2,....,n}, and two binary features
z1,79 € {0,1}. Suppose P(Y = y) = 5., P(z; = 1|Y = y) :le‘—;ﬂp(;rg =1Y =y) = 5.
Which class will naive Bayes classifier produce on a test item with 1 = 1 and x» :ﬁ"’-
Hint: make sure you read and understand Fall 2016 Final QQ18.

Solution:

()

]P’; —_ ]--u; ) :1*}!:
ry = 1,19 = 1) = argmax 21 . ' y)
y IP(;I'l — 1,1‘2 — 1)
Plry = 1Lx9 = 1Y = y)P(Y = y)

— arghlax

P(A|B) = P(A, B)/P(B)

argmax P(Y =

y ]P(;I'l — 1,1‘2 - 1)
Plry = 1Y = y)P(xy = 1Y =y)P(Y =
— argmax 1 Y = y)P(xy = 1|Y =y)P(Y = y)
y IP’(;I'l — 1,1‘2 — 1)
= argmax P(r; = 1|Y = y)P(zy = 1Y = y)
Y
o y vy
- mgl;mx 46 52
— argmax y°
Y

y? is increasing when ¥ is positive. Since y € 1,2, ....n and n = 28,

argmax yE = 28
y



9. (M7Q2) (Fall 2014 Final Q9) Consider the following directed graphical model over
binary variables: A — B + (. Given the CPTs:

Variable Probability | Variable Probability
P(A=1) 0.68

P(C = 1) 0.64

P(B=1A=1,C=1) | 0.85 B =1|A = 0. 0:1] 0.95
P(B=1A=1,C=0)|0.99 IP( =1A=0,C=0) | 0.44

What is the probability that P(A =

0,B=0,C =1)?

Solution:

P(-A, ~B,C) = P(~B|-A,C) -
— P(~B|-A,C) - P(~A) -
= (1-P(B|2A,C)) (1

= (1 —0.95)

P(~A,C)

P(C)
— P(A)) - P(C)
% (1 —0.68) x 0.64

common effect



10. (M7Q3) (Fall 2014 Final Q9) Consider the following directed graphical model over
binary variables: A — B — (. Given the CPTs:

Variable Probability | Variable Probability
P(A=1) 0.17

PB=1A=1)]0.2 P(B=1A=0) | 0.34
P(C=1B=1)|0.01 P(C'=1/B=0) | 033

What is the probability that P(A = 1|C' = 1)?

Solution:
P(A.C) PAB.C)+PA,-B.C)
P(A|C) = = —_—
(4IC) P(C) P(C)
h
While e
P(A|B) = P(A, B)/P(B) P(A,B,C) =P(C|A,B) -P(A, B)
=P(C|A,B) -P(B|A)-P(A) @
In other words, 1~ N
A C
P(A|C) = P{[F’{CJ)

B P(A, B,C)+P(A,-B,C)

- P(A,B,C)+P(A,-B,C)+P(-A,B,C) + P(-A,-B,C)

B P(C|B) - P(B|A) -P(A) + P(Cl=B) - P(~B|A) - P(A)

- P(C|B)-P(B|A) -P(A) + P(C|-B) - P(~B|A) - P(A) + P(C|B) ‘P(B|-A) - P(2A) + P(C|-B) - P(~B|-~4) - P(~4)
B 0.01 x 0.2x 0.17 +0.33 x (1 —0.2) x 0.17

S 001x02x0.17+0.33 % (1—-0.2) x0.17+0.01 x 0.34x (1 —0.17) +0.33 x (1 —-0.34) x (1 —0.17)

e ________J

10



11. (M7Q4, video) (Fall 2014 Final Q9) Consider the following directed graphical model
over binary variables: A «+ B — (. Given the CPTs:

Variable Probability | Variable Probability
P(B=1) 0.66

P(C=1B=1)]|0.12 P(C=1B=0)]0.26
P(A=1/B=1) | 0.28 P(A=1|B=0) | 0.53

What is the probability that P(A = 0|C' = 1)?

Solution:

P(-A

 P(~A,C) P(=A,B,C)+P(-A,-B,C)
€)= =50 P(C) 9

While @ @

P(~A, B,C) = P(-A,C|B) - P(B)

— P(-A|B) - P(C|B) - P(B)

COInInon calse

In other words,

P(-A, C)

P(-A|C) = B(C)

P(-A, B.C') + P(-A,-B, l”)
- P(-A,B,C)+P(-A,-B,C)+P(A, B, C)+P(A, -B,C)
B P(-A|B)-P(C|B) - P(B) + BF(-A|-B) - P(C|-B) - P(~B)
- P(-A|B)-P(C|B) - P(B) + P(~A|-B) - F(C|-B) - P(~B) + P(A|B) - P(C|B) - P(B) + P(A|-B) - P(C|~B) - P(~B
B (1 —0.28) x 0.12 x 0.66 + (1 — 0.53) x 0.26 x (1 —0.66)
(1 —0.28) x0.12 x 0.66 + (1 —0.53) x 0.26 x (1 — 0.66) + 0.28 x 0.12 x 0.66 + 0.53 x 0.26 x (1 — 0.66)

11



12. (Spring 2017 Final Q8)

Consider the following Bayesian Network containing 5 Boolean
random variables: @

(a) Write an expression for computing P(A, S, H, E, (')
given only information that is in the associated CPTs for v
this network.

(¢) How many numbers must be stored in total in all CPTs

associated with this network (excluding numbers that can @

be calculated from other numbers)?

Solution: (a)

P(A,-S.H. E,~C) =P(~-C A,ﬂS,H,E! -P(A.-S.H. F)
=P(~C|H,E)-P(E|A,~S,.H)-P(A,-S,H)
=P(-C|H,E)-P(E|A.-S,H)-P(A)-P(-S)-P(H)

A=0,A=1,5=0,5=1,H=0, H=1

1
2> P(E=1|A,S,H),P(E =1|-A.5, H),....P(E =1|-A,~S,~H)
22 P(C =1|E,H).P(C =1|-E,.H),P(C =1|E,~H),P(C = 1|-E. ~H)

P(C=0lE=1,H=1)=1-P(C=1|E=1, H=1)

oo
oo
— O

—_— et o

Last updated: June 25, 2020 at 3:54pm
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