CS540 Introduction to Artificial Intelligence

Lecture 12 10

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

June 21, 2022

Special Bayesian Network for Sequences Motivation

- A sequence of features $X_1, X_2, ...$ can be modeled by a Markov Chain but they are not observable.
- A sequence of labels $Y_1, Y_2, ...$ depends only on the current hidden features and they are observable.
- This type of Bayesian Network is called a Hidden Markov Model.

HMM Applications Part 1

- Weather prediction.
- Hidden states: $X_1, X_2, ...$ are weather that is not observable by a person staying at home (sunny, cloudy, rainy).
- Observable states: $Y_1, Y_2, ...$ are Badger Herald newspaper reports of the condition (dry, dryish, damp, soggy).
- Speech recognition.
- Hidden states: $X_1, X_2, ...$ are words.
- Observable states: $Y_1, Y_2, ...$ are acoustic features.

HMM Applications Part 2

- Stock or bond prediction.
- Hidden states: $X_1, X_2, ...$ are information about the company (profitability, risk measures).
- Observable states: $Y_1, Y_2, ...$ are stock or bond prices.
- Speech synthesis: Chatbox.
- Hidden states: $X_1, X_2, ...$ are context or part of speech.
- Observable states: $Y_1, Y_2, ...$ are words.

Other HMM Applications

- Machine translation.
- Handwriting recognition.
- Gene prediction.
- Traffic control.

Hidden Markov Model Diagram

Transition and Likelihood Matrices

Motivation

- An initial distribution vector and two-state transition matrices are used to represent a hidden Markov model.
- Initial state vector: π .

$$\pi_i = \mathbb{P}\left\{X_1 = i\right\}, i \in \{1, 2, ..., |X|\}$$

2 State transition matrix: A.

$$A_{ij} = \mathbb{P}\left\{X_{t} = j | X_{t-1} = i\right\}, i, j \in \{1, 2, ..., |X|\}$$

Observation Likelihood matrix (or output probability distribution): B.

$$B_{ij} = \mathbb{P}\left\{Y_t = i | X_t = j\right\}, i \in 1, 2, ..., |Y|, j \in 1, 2, ..., |X|$$

Evaluation and Training

- There are three main tasks associated with an HMM.
- ① Evaluation problem: finding the probability of an observed sequence given an HMM: $y_1, y_2, ...$
- ② Decoding problem: finding the most probable hidden sequence given the observed sequence: $x_1, x_2, ...$
- **3** Learning problem: finding the most probable HMM given an observed sequence: π , A, B, ...

Expectation-Maximization Algorithm

Description

- \bullet Start with a random guess of π , A, B.
- Compute the forward probabilities: the joint probability of an observed sequence and its hidden state.
- Compute the backward probabilities: the probability of an observed sequence given its hidden state.
- Update the model π, A, B using Bayes rule.
- Repeat until convergence.
- Sometimes, it is called the Baum-Welch Algorithm.

Hidden Markov Model Example 1

Definition

• Compute $\mathbb{P}\{X_4 = 1, X_5 = 2 | X_3 = 0\}.$

Prsx == 1/x, = 1/2, = 1/x, = 1

Hidden Markov Model Example 1 Computations Definition

Hidden Markov Model Example 2

Definition

• Compute
$$\mathbb{P}\{Y_1 = 0, Y_2 = 1\}$$
.

$$P_r \{Y_1 = 0, Y_2 = 1\}, X_1 = 0$$

$$X_2 = \begin{cases} 0 \\ 0 \end{cases}$$

$$P_r \{Y_1 = 0, Y_2 = 1\}, X_1 = 0$$

$$P_r \{Y_1 = 0, Y_2 = 1\}, X_2 = 0$$

$$P_r \{Y_1 = 0, Y_2 = 1\}, X_3 = 0$$

$$P_r \{Y_2 = 0, Y_3 = 1\}, X_4 = 0$$

$$P_r \{Y_3 = 0, Y_4 = 0\}, Y_4 = 0$$

$$P_r \{Y_4 = 0, Y_2 = 1\}, X_4 = 0$$

$$P_r \{Y_4 = 0, Y_4 = 0\}, Y_4 = 0$$

$$P_r \{Y_4 = 0, Y_4 = 0\}, Y_4 = 0$$

$$P_r \{Y_4 = 0, Y_4 = 0\}, Y_4 = 0$$

$$P_r \{Y_4 = 0, Y_4 = 0\}, Y_4 = 0$$

$$P_r \{Y_4 = 0, Y_4 = 0\}, Y_4 = 0$$

Hidden Markov Model Example 2 Computations Definition

Hidden Markov Model Example 3 Definition

• Compute $\mathbb{P}\{X_1=0, X_2=2|Y_1=0, Y_2=1\}.$

$$Pr \int X_{1} = 0, X_{2} = 2, Y_{1} = 0, Y_{2} = 1$$

$$Pr TY_{1} = 0, Y_{2} = 1$$

Hidden Markov Model Example 3 Computations Definition

Dynamic System

Motivation

- The hidden units are used as the hidden states.
- They are related by the same function over time.

$$\frac{h_{t+1} = f(h_t, w)}{h_{t+2} = f(h_{t+1}, w)}
\overline{h_{t+3} = f(h_{t+2}, w)}$$

. . .

Dynamic System with Input

Motivation

- The input units can also drive the dynamics of the system.
- They are still related by the same function over time.

$$\frac{h_{t+1}}{h_{t+2}} = f(h_t, x_{t+1}, w)
h_{t+2} = f(h_{t+1}, x_{t+2}, w)
h_{t+3} = f(h_{t+2}, x_{t+3}, w)$$

..

Dynamic System with Output

Motivation

• The output units only depend on the hidden states.

$$y_{t+1} = f(h_{t+1})$$

 $y_{t+2} = f(h_{t+2})$
 $y_{t+3} = f(h_{t+3})$

. . .

Dynamic System Diagram

Recurrent Neural Network Structure Diagram

Activation Functions

Definition

 The hidden layer activation function can be the tanh activation, and the output layer activation function can be the softmax function.

$$z_t^{(x)} = W^{(x)}x_t + W^{(h)}a_{t-1}^{(x)} + b^{(x)}$$

$$a_t^{(x)} = g\left(z_t^{(x)}\right), g\left(\boxed{\cdot}\right) = \tanh\left(\boxed{\cdot}\right)$$

$$z_t^{(y)} = W^{(y)}a_t^{(x)} + b^{(y)}$$

$$a_t^{(y)} = g\left(z_t^{(y)}\right), g\left(\boxed{\cdot}\right) = \text{softmax}\left(\boxed{\cdot}\right)$$

Cost Functions

Definition

Cross entropy loss is used with softmax activation as usual.

$$C_{t} = H\left(y_{t}, a_{t}^{(y)}\right)$$
$$C = \sum_{t} C_{t}$$

BackPropogation Through Time

Definition

 The gradient descent algorithm for recurrent neural networks is called BackPropogation Through Time (BPTT). The update procedure is the same as standard neural networks using the chain rule.

$$w = w - \alpha \frac{\partial C}{\partial w}$$
$$b = b - \alpha \frac{\partial C}{\partial b}$$

Unfolded Network Diagram Definition

Vanishing and Exploding Gradient

- If the weights are small, the gradient through many layers will shrink exponentially. This is called the vanishing gradient problem.
- If the weights are large, the gradient through many layers will grow exponentially. This is called the exploding gradient problem.
- Fully connected and convolutional neural networks only have a few hidden layers, so vanishing and exploding gradient is not a problem in training those networks.
- In a recurrent neural network, if the sequences are long, the gradients can easily vanish or explode.

RNN Variants

Discussion

- Long Short Term Memory (LSTM): gated units to keep track of long term dependencies.
- Gated Recurrent Unit (GRU): different gated units.
 Transformers (BERT, GPT): no recurrent units, positional encoding, attention mechansim.