Gradient-Based Filters

Computer Vision

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

CS540 Introduction to Artificial Intelligence Lecture 11

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

June 27, 2022

Gradient-Based Filters 00000000 Computer Vision

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Coordination Game

- You are not allowed to discuss anything about this question in chat. There will be around 10 new questions on the midterm exam. I will post *n* of them before the exam (this weekend):
- A: n = 0.
- B: n = 1 if more than 50 percent of you choose B.
- C: n = 2 if more than 75 percent of you choose C.
- D: n = 3 if more than 95 percent of you choose D.
- E: n = 0.
- I will repeat this question a second time. If you fail to coordinate both times, I will not post any of the new questions.

Gradient-Based Filters

Computer Vision

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Exam Date

- July 11 from 5 : 30 to 8 : 30.
- July 27 (online only, with the other section) from 5 : 30 to 8 : 30.
- A : I will be available on July 11.
- B : I will be available on July 27.
- C : I am not available on both dates (email me).

Gradient-Based Filters 000000000 Computer Vision

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Exam Format

- Similar to M2 to M7, X1 to X3, total of 30 questions.
- No hints, auto-grading will be turned off.
- There could be minor changes to the questions in *M*2 to *M*7, *X*1 to *X*3, please re-read the questions carefully.
- The last question will ask you for comments.

Gradient-Based Filters 000000000 Computer Vision

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Exam Formula Sheet

- Formulas on W1 to W7 pages: post on Piazza if you want me to add any.
- You are allowed to implement some of these formulas in Excel or a programming language and use them during the exams.
- You are NOT allowed to work with another student.

Gradient-Based Filters 000000000 Computer Vision

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Review Session

- July 6 from 5 : 30 to 8 : 30 on Zoom, go through past exam questions, answer questions.
- July 7 TA Office Hours on Zoom.
- Message me if you would like more office hours.

Gradient-Based Filters

Computer Vision

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Image Features Diagram

Gradient-Based Filters 000000000 Computer Vision

One Dimensional Convolution

- The convolution of a vector $x = (x_1, x_2, ..., x_m)$ with a filter $w = (w_{-k}, w_{-k+1}, ..., w_{k-1}, w_k)$ is: $a = (a_1, a_2, ..., a_m) = x * w$ $a_j = \sum_{t=-k}^{k} w_t x_{j-t}, j = 1, 2, ..., m$
- w is also called a kernel (different from the kernel for SVMs).
- The elements that do not exist are assumed to be 0.

Gradient-Based Filters 00000000 Computer Vision

Two Dimensional Convolution

- The convolution of an $m \times m$ matrix X with a $(2k + 1) \times (2k + 1)$ filter W is: A = X * W $A_{j,j'} = \sum_{s=-k}^{k} \sum_{t=-k}^{k} W_{s,t} X_{j-s,j'-t}, j, j' = 1, 2, ..., m$
- The matrix W is indexed by (s, t) for s = -k, -k + 1, ..., k 1, k and t = -k, -k + 1, ..., k 1, k.
- The elements that do not exist are assumed to be 0.

Gradient-Based Filters 00000000 Computer Vision

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Convolution Diagram and Demo

Gradient-Based Filters

Computer Vision

Image Gradient Definition

• The gradient of an image is defined as the change in pixel intensity due to the change in the location of the pixel.

$$\frac{\partial I\left(s,t\right)}{\partial s} \approx \frac{I\left(s+\frac{\varepsilon}{2},t\right) - I\left(s-\frac{\varepsilon}{2},t\right)}{\varepsilon}, \varepsilon = 1$$
$$\frac{\partial I\left(s,t\right)}{\partial t} \approx \frac{I\left(s,t+\frac{\varepsilon}{2}\right) - I\left(s,t-\frac{\varepsilon}{2}\right)}{\varepsilon}, \varepsilon = 1$$

Gradient-Based Filters

Computer Vision

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Image Derivative Filters Definition

• The gradient can be computed using convolution with the following filters.

$$w_{x} = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}, w_{y} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

Gradient-Based Filters

Computer Vision 0000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Sobel Filter

• The Sobel filters also are used to approximate the gradient of an image.

$$W_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}, W_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Gradient-Based Filters

Computer Vision

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Gradient of Images

- The gradient of an image I is $(\nabla_x I, \nabla_y I)$. $\nabla_x I = W_x * I, \nabla_y I = W_y * I$
- The gradient magnitude is *G* and gradient direction Θ are the following.

$$egin{aligned} \mathcal{G} &= \sqrt{
abla_x^2 +
abla_y^2} \ \Theta &= rctan\left(rac{
abla_y}{
abla_x}
ight) \end{aligned}$$

Gradient-Based Filters

Computer Vision

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Gradient of Images Demo

Gradient-Based Filters

Computer Vision

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Convolution Example

• Find the gradient magnitude and direction for the center cell of the following image. Use the derivative filters $\begin{bmatrix} -1\\0\\1 \end{bmatrix}$ and $\begin{bmatrix} -1\\0\\1 \end{bmatrix}$

$$\begin{bmatrix}
-1 & 0 & 1 \\
0 & 0 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}$$

Gradient-Based Filters

Computer Vision

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Gradient Example

Gradient-Based Filters

Computer Vision

Convolution Example 1

$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} * \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
• $A : \begin{bmatrix} -1 & -3 & -3 \\ 0 & 0 & 0 \\ 1 & 3 & 3 \end{bmatrix}, B : \begin{bmatrix} -3 & -3 & 3 \\ -4 & -4 & 4 \\ -3 & -3 & 3 \end{bmatrix}$
• $C : \begin{bmatrix} -3 & -4 & -3 \\ -3 & -4 & -3 \\ 3 & 4 & 3 \end{bmatrix}, D : \begin{bmatrix} -1 & 0 & 1 \\ -3 & 0 & 3 \\ -3 & 0 & 3 \end{bmatrix}$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Gradient-Based Filters

Computer Vision

Convolution Example 2

$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} * \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$
• $A : \begin{bmatrix} -1 & -3 & -3 \\ 0 & 0 & 0 \\ 1 & 3 & 3 \end{bmatrix}, B : \begin{bmatrix} -3 & -3 & 3 \\ -4 & -4 & 4 \\ -3 & -3 & 3 \end{bmatrix}$
• $C : \begin{bmatrix} -3 & -4 & -3 \\ -3 & -4 & -3 \\ 3 & 4 & 3 \end{bmatrix}, D : \begin{bmatrix} -1 & 0 & 1 \\ -3 & 0 & 3 \\ -3 & 0 & 3 \end{bmatrix}$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Gradient-Based Filters

Computer Vision

SIFT Discussion

• Scale Invariant Feature Transform (SIFT) features are features that are invariant to changes in the location, scale, orientation, and lighting of the pixels.

Gradient-Based Filters

Computer Vision

Histogram Binning Diagram

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Gradient-Based Filters

Computer Vision

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

HOG Discussion

• Histogram of Oriented Gradients features is similar to SIFT but does not use dominant orientations.

Gradient-Based Filters 000000000 Computer Vision

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Classification Discussion

- SIFT features are not often used in training classifiers and more often used to match the objects in multiple images.
- HOG features are usually computed for every cell in the image and used as features (in place of pixel intensities) in classification algorithms such as SVM.